高并发编程之ThreadPool 线程池

简介: 高并发编程之ThreadPool 线程池

10 ThreadPool 线程池

10.1 线程池简介

线程池(英语:thread pool):一种线程使用模式。线程过多会带来调度开销,
进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理
者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代
价。线程池不仅能够保证内核的充分利用,还能防止过分调度。
例子: 10 年前单核 CPU 电脑,假的多线程,像马戏团小丑玩多个球,CPU 需
要来回切换。 现在是多核电脑,多个线程各自跑在独立的 CPU 上,不用切换
效率高。

线程池的优势:

线程池做的工作只要是控制运行的线程数量,处理过程中将任
务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了最大数量,
超出数量的线程排队等候,等其他线程执行完毕,再从队列中取出任务来执行。

它的主要特点为:

• 降低资源消耗: 通过重复利用已创建的线程降低线程创建和销毁造成的销耗。
• 提高响应速度: 当任务到达时,任务可以不需要等待线程创建就能立即执行。
• 提高线程的可管理性: 线程是稀缺资源,如果无限制的创建,不仅会销耗系统资
源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
Java 中的线程池是通过 Executor 框架实现的,该框架中用到了 Executor,Executors,
ExecutorService,ThreadPoolExecutor 这几个类

10.2 线程池参数说明

本次介绍 5 种类型的线程池

10.2.1 常用参数(重点)

• corePoolSize 线程池的核心线程数
• maximumPoolSize 能容纳的最大线程数
• keepAliveTime 空闲线程存活时间
• unit 存活的时间单位
• workQueue 存放提交但未执行任务的队列
• threadFactory 创建线程的工厂类
• handler 等待队列满后的拒绝策略
线程池中,有三个重要的参数,决定影响了拒绝策略:corePoolSize - 核心线
程数,也即最小的线程数。workQueue - 阻塞队列 。 maximumPoolSize -
最大线程数
当提交任务数大于 corePoolSize 的时候,会优先将任务放到 workQueue 阻
塞队列中。当阻塞队列饱和后,会扩充线程池中线程数,直到达到maximumPoolSize 最大线程数配置。此时,再多余的任务,则会触发线程池
的拒绝策略了。
总结起来,也就是一句话,当提交的任务数大于(workQueue.size() +
maximumPoolSize ),就会触发线程池的拒绝策略

10.2.2 拒绝策略(重点)

CallerRunsPolicy: 当触发拒绝策略,只要线程池没有关闭的话,则使用调用
线程直接运行任务。一般并发比较小,性能要求不高,不允许失败。但是,由
于调用者自己运行任务,如果任务提交速度过快,可能导致程序阻塞,性能效
率上必然的损失较大
AbortPolicy: 丢弃任务,并抛出拒绝执行 RejectedExecutionException 异常
信息。线程池默认的拒绝策略。必须处理好抛出的异常,否则会打断当前的执
行流程,影响后续的任务执行。
DiscardPolicy: 直接丢弃,其他啥都没有
DiscardOldestPolicy: 当触发拒绝策略,只要线程池没有关闭的话,丢弃阻塞
队列 workQueue 中最老的一个任务,并将新任务加入

10.3 线程池的种类与创建

10.3.1 newCachedThreadPool(常用)

作用

创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空
闲线程,若无可回收,则新建线程.

特点:

• 线程池中数量没有固定,可达到最大值(Interger. MAX_VALUE)
• 线程池中的线程可进行缓存重复利用和回收(回收默认时间为 1 分钟)
• 当线程池中,没有可用线程,会重新创建一个线程

创建方式:

/**
     * 可缓存线程池
     * @return
     */
    public static ExecutorService newCachedThreadPool(){
/**
 * corePoolSize 线程池的核心线程数
 * maximumPoolSize 能容纳的最大线程数
 * keepAliveTime 空闲线程存活时间
 * unit 存活的时间单位
 * workQueue 存放提交但未执行任务的队列
 * threadFactory 创建线程的工厂类:可以省略
 * handler 等待队列满后的拒绝策略:可以省略
 */
        return new ThreadPoolExecutor(0,
                Integer.MAX_VALUE,
                60L,
                TimeUnit.SECONDS,
                new SynchronousQueue<>(),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
    }

场景:

适用于创建一个可无限扩大的线程池,服务器负载压力较轻,执行时间较
短,任务多的场景

10.3.2 newFixedThreadPool(常用)

作用

创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这
些线程。在任意点,在大多数线程会处于处理任务的活动状态。如果在所有线
程处于活动状态时提交附加任务,则在有可用线程之前,附加任务将在队列中
等待。如果在关闭前的执行期间由于失败而导致任何线程终止,那么一个新线
程将代替它执行后续的任务(如果需要)。在某个线程被显式地关闭之前,池
中的线程将一直存在。特征:
• 线程池中的线程处于一定的量,可以很好的控制线程的并发量
• 线程可以重复被使用,在显示关闭之前,都将一直存在
• 超出一定量的线程被提交时候需在队列中等待

创建方式

/**
     * 固定长度线程池
     * @return
     */
    public static ExecutorService newFixedThreadPool(){
/**
 * corePoolSize 线程池的核心线程数
 * maximumPoolSize 能容纳的最大线程数
 * keepAliveTime 空闲线程存活时间
 * unit 存活的时间单位
 * workQueue 存放提交但未执行任务的队列
 * threadFactory 创建线程的工厂类:可以省略
 * handler 等待队列满后的拒绝策略:可以省略
 */
        return new ThreadPoolExecutor(10,
                10,
                0L,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
    }

场景:

适用于可以预测线程数量的业务中,或者服务器负载较重,对线程数有严
格限制的场景

10.3.3 newSingleThreadExecutor(常用)

作用

创建一个使用单个 worker 线程的 Executor,以无界队列方式来运行该
线程。(注意,如果因为在关闭前的执行期间出现失败而终止了此单个线程,
那么如果需要,一个新线程将代替它执行后续的任务)。可保证顺序地执行各
个任务,并且在任意给定的时间不会有多个线程是活动的。与其他等效的
newFixedThreadPool 不同,可保证无需重新配置此方法所返回的执行程序即
可使用其他的线程。

特征:

线程池中最多执行 1 个线程,之后提交的线程活动将会排在队列中以此
执行

创建方式:

/**
     * 单一线程池
     * @return
     */
    public static ExecutorService newSingleThreadExecutor(){
/**
 * corePoolSize 线程池的核心线程数
 * maximumPoolSize 能容纳的最大线程数
 * keepAliveTime 空闲线程存活时间
 * unit 存活的时间单位
 * workQueue 存放提交但未执行任务的队列
 * threadFactory 创建线程的工厂类:可以省略
 * handler 等待队列满后的拒绝策略:可以省略
 */
        return new ThreadPoolExecutor(1,
                1,
                0L,
                TimeUnit.SECONDS,
                new LinkedBlockingQueue<>(),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
    }

场景:

适用于需要保证顺序执行各个任务,并且在任意时间点,不会同时有多个
线程的场景

10.3.4 newScheduleThreadPool(了解)

作用:

线程池支持定时以及周期性执行任务,创建一个 corePoolSize 为传入参
数,最大线程数为整形的最大数的线程池**

特征:

(1)线程池中具有指定数量的线程,即便是空线程也将保留
(2)可定时或者延迟执行线程活动

创建方式:

public static ScheduledExecutorService newScheduledThreadPool(int
                                                                          corePoolSize,
                                                                  ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize,
                threadFactory);
    }

场景:

适用于需要多个后台线程执行周期任务的场景

10.3.5 newWorkStealingPool

jdk1.8 提供的线程池,底层使用的是 ForkJoinPool 实现,创建一个拥有多个
任务队列的线程池,可以减少连接数,创建当前可用 cpu 核数的线程来并行执
行任务

创建方式:

public static ExecutorService newWorkStealingPool(int parallelism) {
/**
 * parallelism:并行级别,通常默认为 JVM 可用的处理器个数
 * factory:用于创建 ForkJoinPool 中使用的线程。
 * handler:用于处理工作线程未处理的异常,默认为 null
 * asyncMode:用于控制 WorkQueue 的工作模式:队列---反队列
 */
        return new ForkJoinPool(parallelism,
                ForkJoinPool.defaultForkJoinWorkerThreadFactory,
                null,

场景:

适用于大耗时,可并行执行的场景

10.4 线程池入门案例

场景: 火车站 3 个售票口, 10 个用户买票

package com.xingchen.pool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
 * @author xing'chen
 */ //演示线程池三种常用分类
public class ThreadPoolDemo1 {
    public static void main(String[] args) {
        //一池五线程
        ExecutorService threadPool1 = Executors.newFixedThreadPool(5); //5个窗口
        //一池一线程
        ExecutorService threadPool2 = Executors.newSingleThreadExecutor(); //一个窗口
        //一池可扩容线程
        ExecutorService threadPool3 = Executors.newCachedThreadPool();
        //10个顾客请求
        try {
            for (int i = 1; i <=10; i++) {
                //执行
                threadPool3.execute(()->{
                    System.out.println(Thread.currentThread().getName()+" 办理业务");
                });
            }
        }catch (Exception e) {
            e.printStackTrace();
        }finally {
            //关闭
            threadPool3.shutdown();
        }
    }
}

10.5 线程池底层工作原理(重要)

  1. 在创建了线程池后,线程池中的线程数为零
  2. 当调用 execute()方法添加一个请求任务时,线程池会做出如下判断: 2.1 如
    果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务;
    2.2 如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入
    队列; 2.3 如果这个时候队列满了且正在运行的线程数量还小于
    maximumPoolSize,那么还是要创建非核心线程立刻运行这个任务; 2.4 如
    果队列满了且正在运行的线程数量大于或等于 maximumPoolSize,那么线程
    池会启动饱和拒绝策略来执行。
  3. 当一个线程完成任务时,它会从队列中取下一个任务来执行
  4. 当一个线程无事可做超过一定的时间(keepAliveTime)时,线程会判断:
    4.1 如果当前运行的线程数大于 corePoolSize,那么这个线程就被停掉。 4.2
    所以线程池的所有任务完成后,它最终会收缩到 corePoolSize 的大小。

10.6 注意事项(重要)

  1. 项目中创建多线程时,使用常见的三种线程池创建方式,单一、可变、定长都
    有一定问题,原因是 FixedThreadPool 和 SingleThreadExecutor 底层都是用
    LinkedBlockingQueue 实现的,这个队列最大长度为 Integer.MAX_VALUE,
    容易导致 OOM。所以实际生产一般自己通过 ThreadPoolExecutor 的 7 个参
    数,自定义线程池
  2. 创建线程池推荐适用 ThreadPoolExecutor 及其 7 个参数手动创建
    o corePoolSize 线程池的核心线程数
    o maximumPoolSize 能容纳的最大线程数
    o keepAliveTime 空闲线程存活时间
    o unit 存活的时间单位
    o workQueue 存放提交但未执行任务的队列
    o threadFactory 创建线程的工厂类
    o handler 等待队列满后的拒绝策略
  3. 为什么不允许适用不允许 Executors.的方式手动创建线程池,如下图

目录
相关文章
|
22天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
20天前
|
缓存 Java 调度
多线程编程核心:上下文切换深度解析
在现代计算机系统中,多线程编程已成为提高程序性能和响应速度的关键技术。然而,多线程编程中一个不可避免的概念就是上下文切换(Context Switching)。本文将深入探讨上下文切换的概念、原因、影响以及优化策略,帮助你在工作和学习中深入理解这一技术干货。
37 10
|
22天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
16天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
16天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
40 3
|
20天前
|
算法 调度 开发者
多线程编程核心:上下文切换深度解析
在多线程编程中,上下文切换是一个至关重要的概念,它直接影响到程序的性能和响应速度。本文将深入探讨上下文切换的含义、原因、影响以及如何优化,帮助你在工作和学习中更好地理解和应用多线程技术。
31 4
|
25天前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
22天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
54 1
|
24天前
|
API Android开发 iOS开发
深入探索Android与iOS的多线程编程差异
在移动应用开发领域,多线程编程是提高应用性能和响应性的关键。本文将对比分析Android和iOS两大平台在多线程处理上的不同实现机制,探讨它们各自的优势与局限性,并通过实例展示如何在这两个平台上进行有效的多线程编程。通过深入了解这些差异,开发者可以更好地选择适合自己项目需求的技术和策略,从而优化应用的性能和用户体验。
|
26天前
|
缓存 Java 开发者
Java中的多线程编程:从基础到进阶
在Java的世界中,多线程编程是一块不可或缺的拼图。它不仅提升了程序的效率和响应性,还让复杂任务变得井然有序。本文将带你领略多线程编程的魅力,从创建线程的基础操作到高级同步机制的应用,再到线程池的高效管理,我们将一步步揭开多线程编程的神秘面纱。无论你是初学者还是有一定经验的开发者,这篇文章都会为你提供新的视角和深入的理解。让我们一起探索Java多线程编程的世界,开启一段精彩的旅程吧!
39 0