深入Golang之Mutex

简介: 深入Golang之Mutex

深入Golang之Mutex



基本使用方法

  • 直接在流程结构中使用 lockunlock
  • 嵌入到结构中,然后通过结构体的 mutex 属性 调用 lockunlock
  • 嵌入到结构体中,但是是直接在需要锁定的资源方法中使用,让外界无需关注资源锁定

在进行资源锁定的过程中,很容易出现 data race,这时候我们可以使用 race detector ,融入到 持续集成 中,以减少代码的 Bug


看实现



初版互斥锁

  • 字段 key:是一个 flag,用来标识这个排外锁是否被某个 goroutine 所持有,如果 key 大于等于 1,说明这个排外锁已经被持有; key 不仅仅标识了锁是否被 goroutine 所持有,还记录了当前持有和等待获取锁
    goroutine 的数量
  • 字段 sema:是个信号量变量,用来控制等待 goroutine 的阻塞休眠和唤醒。

Unlock 方法可以被任意的 goroutine 调用释放锁,即使是没持有这个互斥锁的 goroutine,也可以进行这个操作。这是因为,Mutex 本身并没有包含持有这把锁的 goroutine 的信息,所以,Unlock 也不会对此进行检查。Mutex 的这个设计一直保持至今。


由于上面这个原因,就有可能出现 if 判断中释放其他 goroutine,释放锁的 goroutine 不必是锁的持有者


func lockTest()
{
  lock()
  var count
  
  if count {
      unlock()  
    }
  
  // 此处就可能出现 goroutine 释放其他的锁
  unlock()
}


四种常见使用错误


Lock/Unlock 不是成对出现的,漏写、意外删除


Copy已使用的 Mutex


type Counter struct { 
  sync.Mutex
  Count int
}
func main() { 
  var c Counter
  c.Lock()
  defer c.Unlock()
  c.Count++
  foo(c) // 复制锁
}
// 这里Counter的参数是通过复制的方式传入的
func foo(c Counter) { 
  c.Lock() 
  defer c.Unlock()
  fmt.Println("in foo")
}


为什么它不能被复制?


原因在于 Mutex 是一个有状态的对象,它的 state 字段记录这个锁的状态。如果你要复制一个已经加锁的 Mutex 给一个新的变量,那么新的刚初始化的变量居然被加锁了,这显然不符合预期


重入


  • 可重入锁概念解释

当一个线程获取锁时,如果没有其他线程拥有这个锁,那么这个线程就成功获取了这个锁,之后,如果其他线程再去请求这个锁,就会处于阻塞状态。如果拥有这把锁的线程再请求这把锁的话,不会阻塞,而是成功返回,所以叫可重入锁。


  • Mutex 不是可重入锁


想想也不奇怪,因为 Mutex 的实现中没有记录哪个 goroutine 拥有这把锁。理论上,任何 goroutine 都可以随意地 Unlock 这把锁,所以没办法计算重入条件


func foo(l sync.Locker) {
  fmt.Println("in foo")
  l.Lock()
  bar(l)
  l.Unlock()
}
// 这就是可重入锁
func bar(l sync.Locker) {
  l.Lock()
  fmt.Println("in bar")
  l.Unlock()
}
func main() {
  l := &sync.Mutex{}
  foo(l)
}


自己实现可重入锁


  • 通过 goroutine id
// RecursiveMutex 包装一个Mutex,实现可重入
type RecursiveMutex struct {
  sync.Mutex
  owner     int64 // 当前持有锁的goroutine id
  recursion int32 // 这个goroutine 重入的次数
}
func (m *RecursiveMutex) Lock() {
  gid := goid.Get() // 如果当前持有锁的goroutine就是这次调用的goroutine,说明是重入
  if atomic.LoadInt64(&m.owner) == gid {
    m.recursion++
    return
  }
  m.Mutex.Lock() // 获得锁的goroutine第一次调用,记录下它的goroutine id,调用次数加1
  atomic.StoreInt64(&m.owner, gid)
  m.recursion = 1
}
func (m *RecursiveMutex) Unlock() {
  gid := goid.Get() // 非持有锁的goroutine尝试释放锁,错误的使用
  if atomic.LoadInt64(&m.owner) != gid {
    panic(fmt.Sprintf("wrong the owner(%d): %d!", m.owner, gid))
  } // 调用次数减1
  m.recursion--
  if m.recursion != 0 { // 如果这个goroutine还没有完全释放,则直接返回
    return
  } // 此goroutine最后一次调用,需要释放锁
  atomic.StoreInt64(&m.owner, -1)
  m.Mutex.Unlock()
}


有一点,要注意,尽管拥有者可以多次调用 Lock,但是也必须调用相同次数的 Unlock,这样才能把锁释放掉。这是一个合理的设计,可以保证 LockUnlock 一一对应。


  • 方案二:token

这个与 goroutine id 差不多, goroutine id 既然没有暴露出来,说明设计方不希望使用这个,而这只是可重入锁的一个标识,我们可以自定义这个标识,由协程自己提供,在调用 lockunlock 中,自己传入一个生成的 token 即可,逻辑是一样的


死锁

  • 互斥: 排他性资源
  • 环路等待: 形成环路
  • 持有和等待: 持有还去和其他资源竞争
  • 不可剥夺: 资源只能由持有它的 goroutine 释放

打破以上条件其中一个或者几个即可解除死锁


扩展 Mutex

  • 实现 TryLock
  • 获取等待者的数量等指标
  • 使用 Mutex 实现一个线程安全的队列


读写锁的实现原理及避坑指南

标准库中的 RWMutex 是一个 reader/writer 互斥锁。RWMutex 在某一时刻只能由任意数量的 reader 持有,或者是只被单个的 writer 持有。

他是基于 Mutex 的。如果你遇到可以明确区分 readerwriter goroutine 的场景,且有大量的并发读、少量的并发写,并且有强烈的性能需求,你就可以考虑使用读写锁 RWMutex 替换 Mutex


读写锁的实现方式


  • Read-preferring:读优先的设计可以提供很高的并发性,但是,在竞争激烈的情况下可能会导致写饥饿。这是因为,如果有大量的读,这种设计会导致只有所有的读都释放了锁之后,写才可能获取到锁。
  • Write-preferring:写优先的设计意味着,如果已经有一个 writer 在等待请求锁的话,它会阻止新来的请求锁的 reader 获取到锁,所以优先保障 writer。当然,如果有一些 reader 已经请求了锁的话,新请求的 writer 也会等待已经存在的 reader 都释放锁之后才能获取。所以,写优先级设计中的优先权是针对新来的请求而言的。这种设计主要避免了 writer 的饥饿问题。
  • 不指定优先级:这种设计比较简单,不区分 reader 和 writer 优先级,某些场景下这种不指定优先级的设计反而更有效,因为第一类优先级会导致写饥饿,第二类优先级可能会导致读饥饿,这种不指定优先级的访问不再区分读写,大家都是同一个优先级,解决了饥饿的问题。


Go 标准库中的 RWMutex 设计是 Write-preferring 方案。一个正在阻塞的 Lock 调用会排除新的 reader 请求到锁。


RWMutex 的 3 个踩坑点

  • 不可复制
  • 重入导致死锁
  • 释放未加锁的 RWMutex

我们知道,有活跃 reader 的时候,writer 会等待,如果我们在 reader 的读操作时调用 writer 的写操作(它会调用 Lock 方法),那么,这个 readerwriter 就会形成互相依赖的死锁状态。Reader 想等待 writer 完成后再释放锁,而 writer 需要这个 reader 释放锁之后,才能不阻塞地继续执行。这是一个读写锁常见的死锁场景。


第三种死锁的场景更加隐蔽。


当一个 writer 请求锁的时候,如果已经有一些活跃的 reader,它会等待这些活跃的 reader 完成,才有可能获取到锁,但是,如果之后活跃的 reader 再依赖新的 reader 的话,这些新的 reader 就会等待 writer 释放锁之后才能继续执行,这就形成了一个环形依赖: writer 依赖活跃的 reader -> 活跃的 reader 依赖新来的 reader -> 新来的 reader 依赖 writer。


目录
相关文章
|
6月前
|
安全 Go 数据安全/隐私保护
Golang 语言中基础同步原语 Mutex 和 RWMutex 的区别
Golang 语言中基础同步原语 Mutex 和 RWMutex 的区别
47 0
|
9月前
|
Go 调度
golang mutex一旋二饿三唤醒机制
golang mutex一旋二饿三唤醒机制
|
9月前
|
Go 数据安全/隐私保护
golang mutex两加两解助你实现高并发控制
golang mutex两加两解助你实现高并发控制
|
Go 调度
golang 系列: mutex 讲解
Go 号称是为了高并发而生的,在高并发场景下,势必会涉及到对公共资源的竞争。当对应场景发生时,我们经常会使用 mutex 的 Lock() 和 Unlock() 方法来占有或释放资源。虽然调用简单,但 mutex 的内部却涉及挺多的。今天,就让我们好好研究一下。
344 0
golang 系列: mutex 讲解
|
1月前
|
SQL 前端开发 Go
编程笔记 GOLANG基础 001 为什么要学习Go语言
编程笔记 GOLANG基础 001 为什么要学习Go语言
|
6月前
|
存储 JSON Go
Golang 语言 gRPC 服务怎么同时支持 gRPC 和 HTTP 客户端调用?
Golang 语言 gRPC 服务怎么同时支持 gRPC 和 HTTP 客户端调用?
76 0
|
3月前
|
物联网 Go 网络性能优化
使用Go语言(Golang)可以实现MQTT协议的点对点(P2P)消息发送。MQTT协议本身支持多种消息收发模式
使用Go语言(Golang)可以实现MQTT协议的点对点(P2P)消息发送。MQTT协议本身支持多种消息收发模式【1月更文挑战第21天】【1月更文挑战第104篇】
109 1
|
4天前
|
Go 开发者
Golang深入浅出之-Go语言上下文(context)包:处理取消与超时
【4月更文挑战第23天】Go语言的`context`包提供`Context`接口用于处理任务取消、超时和截止日期。通过传递`Context`对象,开发者能轻松实现复杂控制流。本文解析`context`包特性,讨论常见问题和解决方案,并给出代码示例。关键点包括:1) 确保将`Context`传递给所有相关任务;2) 根据需求选择适当的`Context`创建函数;3) 定期检查`Done()`通道以响应取消请求。正确使用`context`包能提升Go程序的控制流管理效率。
14 1
|
5天前
|
安全 Go 开发者
Golang深入浅出之-Go语言并发编程面试:Goroutine简介与创建
【4月更文挑战第22天】Go语言的Goroutine是其并发模型的核心,是一种轻量级线程,能低成本创建和销毁,支持并发和并行执行。创建Goroutine使用`go`关键字,如`go sayHello("Alice")`。常见问题包括忘记使用`go`关键字、不正确处理通道同步和关闭、以及Goroutine泄漏。解决方法包括确保使用`go`启动函数、在发送完数据后关闭通道、设置Goroutine退出条件。理解并掌握这些能帮助开发者编写高效、安全的并发程序。
13 1
|
5天前
|
SQL 关系型数据库 MySQL
Golang数据库编程详解 | 深入浅出Go语言原生数据库编程
Golang数据库编程详解 | 深入浅出Go语言原生数据库编程