言语太过极端:Twitter总共封杀超过63万个账号

简介:

3月22日消息 根据外媒的消息,针对部分用户的极端言论,Twitter开始采取了强制措施,包括禁言乃至于封杀账号。目前最新的一份调查报告显示Twitter在去年下半年禁掉了37.5万多个因发布仇恨言论的账号。现在,这家公司因这一原因冻结掉的总账号数量已经超过了63万个。

另外,Twitter还提供了政府向他们提出的数据要求数据。据统计,在去年下半年,美国政府总共向Twitter提出了2304条数据信息要求,同比去年上半年略有下降。其中对于恐怖袭击和威胁等的回应Twitter反应最快,超过80%的反馈都得到了有效的回应。

本文转自d1net(转载)

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
AI 大模型时代的网络架构演进
​2025 年 7 月 26 日,第二届中国计算机学会(CCF)分布式计算大会暨中国算力网大会(CCF Computility 2025)在甘肃兰州隆重召开。大会以“算力网:新质生产力背景下的分布式系统”为主题,吸引了来自学术界与产业界的 1200 余位专家学者、行业代表齐聚一堂,共探分布式计算与算力网络的前沿技术与未来趋势。
|
4月前
|
Kubernetes Cloud Native 区块链
Arista cEOS 4.30.10M - 针对云原生环境设计的容器化网络操作系统
Arista cEOS 4.30.10M - 针对云原生环境设计的容器化网络操作系统
125 0
|
7月前
|
传感器 人工智能 机器人
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
368 1
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
|
机器学习/深度学习 数据采集 搜索推荐
探索机器学习在个性化推荐系统中的应用
【5月更文挑战第30天】 随着数字内容的激增,个性化推荐系统成为缓解信息过载的关键工具。本文将深入探讨机器学习技术在构建高效个性化推荐系统中的核心作用,涵盖算法选择、数据处理及系统优化等方面。通过对比不同机器学习模型,如协同过滤、内容推荐以及混合方法,本文旨在为读者提供一套明确的指导框架,以实现更加精准和用户友好的推荐服务。
333 2
|
9月前
|
机器学习/深度学习 存储 人工智能
《C++ 赋能强化学习:Q - learning 算法的实现之路》
本文探讨了如何用C++实现强化学习中的Q-learning算法。强化学习通过智能体与环境的交互来学习最优策略,Q-learning则通过更新Q函数估计动作回报。C++凭借高效的内存管理和快速执行,在处理大规模数据和复杂计算时表现出色。文章详细介绍了环境建模、Q表初始化、训练循环及策略提取等关键步骤,并分析了其在游戏开发、机器人控制等领域的应用前景,同时指出了可能面临的挑战及应对策略。
273 11
|
11月前
|
机器学习/深度学习 vr&ar
深度学习笔记(十):深度学习评估指标
关于深度学习评估指标的全面介绍,涵盖了专业术语解释、一级和二级指标,以及各种深度学习模型的性能评估方法。
432 0
深度学习笔记(十):深度学习评估指标
|
运维 监控 Cloud Native
云原生时代的运维策略:从反应式到自动化
在云计算的浪潮下,运维领域经历了翻天覆地的变化。本文将带你领略云原生时代下的运维新风貌,探索如何通过自动化和智能化手段,实现从传统的反应式运维向主动、智能的运维模式转变。我们将一起见证,这一变革如何助力企业提升效率,保障服务的连续性与安全性,以及运维人员如何适应这一角色的转变,成为云原生时代的引领者。
206 9
|
安全 Java Go
探索Go语言在高并发环境中的优势
在当今的技术环境中,高并发处理能力成为评估编程语言性能的关键因素之一。Go语言(Golang),作为Google开发的一种编程语言,以其独特的并发处理模型和高效的性能赢得了广泛关注。本文将深入探讨Go语言在高并发环境中的优势,尤其是其goroutine和channel机制如何简化并发编程,提升系统的响应速度和稳定性。通过具体的案例分析和性能对比,本文揭示了Go语言在实际应用中的高效性,并为开发者在选择合适技术栈时提供参考。
|
程序员 编译器 数据处理
汇编高手秘籍:解锁性能优化新境界,用汇编语言让你的程序飞起来!
【8月更文挑战第31天】汇编语言作为编程基石,其高效性能备受推崇。尽管现代软件开发更偏爱高级语言,但在性能要求极高的场景下,汇编优化仍不可或缺。本文通过示例代码介绍四种优化技巧:循环展开、寄存器分配、指令重排及SIMD指令使用,显著提升执行效率。同时强调分析性能瓶颈、测试优化效果及保持代码可读性的重要性,助力开发者在关键代码路径上实现性能突破。
571 0
|
机器学习/深度学习 数据采集 自然语言处理
Python实现循环神经网络SimpleRNN、LSTM进行淘宝商品评论情感分析(含爬虫程序)
Python实现循环神经网络SimpleRNN、LSTM进行淘宝商品评论情感分析(含爬虫程序)
Python实现循环神经网络SimpleRNN、LSTM进行淘宝商品评论情感分析(含爬虫程序)