深入浅出:FFmpeg 音频解码与处理AVFrame全解析(二)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 深入浅出:FFmpeg 音频解码与处理AVFrame全解析

深入浅出:FFmpeg 音频解码与处理AVFrame全解析(一)https://developer.aliyun.com/article/1465077


4.2 音频帧数据的处理方法 (Methods of Processing Audio Frame Data)

处理音频帧数据的方法主要取决于你的具体需求。在这里,我们将介绍一种常见的处理方法:将音频帧数据转换为 PCM 数据。

PCM(Pulse Code Modulation,脉冲编码调制)是一种数字音频编码格式,它将连续的模拟信号转换为离散的数字信号。在音频处理中,PCM 数据通常被用作其他音频格式的基础。

在 FFmpeg 中,我们可以通过以下步骤将音频帧数据转换为 PCM 数据:

  1. 获取音频帧数据:首先,我们需要从 AVFrame 结构体中获取音频帧数据。这可以通过访问 AVFramedata 字段来实现。
  2. 处理多通道音频数据:如果音频数据包含多个通道(例如立体声音频),我们需要分别处理每个通道的数据。这可以通过遍历 data 数组来实现。
  3. 处理每个样本的数据:对于每个通道,我们需要处理每个样本的数据。这可以通过遍历 nb_samples 来实现。在遍历过程中,我们需要根据 linesize 的值来确定每个样本的数据大小。
  4. 转换为 PCM 数据:最后,我们需要将每个样本的数据转换为 PCM 数据。这通常可以通过简单的类型转换来实现。

  • 音频样本的字节大小通常与样本的位深度有关,而不是通道数量。例如,如果你有一个16位的音频样本,那么无论你有多少通道,每个样本都将占用2个字节。如果你有一个32位的音频样本,那么每个样本将占用4个字节,无论通道数量如何。
  • 通道数量决定了每个样本时间点有多少个独立的样本值。例如,对于立体声(2通道)音频,每个样本时间点有两个样本值:一个用于左声道,一个用于右声道。对于四通道音频,每个样本时间点有四个独立的样本值。
  • 错误"Sample index exceeds data length":这个错误可能是由于试图访问超出了你的数据数组长度的索引。这可能是因为你的linesize变量或者av_layout.nb_channels变量比你预期的要大。

以下是一个简单的示例代码,展示了如何将音频帧数据转换为 PCM 数据:

// Process the decoded frame data here.
uint8_t** data = frame->extended_data;
int linesize = frame->linesize[0];
const AVChannelLayout & av_layout = codec_ctx_->ch_layout;
int bytes_per_sample = av_get_bytes_per_sample(static_cast<enum AVSampleFormat>(frame->format));
//       int bytes_per_sample = linesize / (frame->nb_samples * av_layout.nb_channels);
try{
    // Add the decoded audio data to decoded_audio_data_ queue
    for (int i = 0; i < frame->nb_samples; ++i) {
        for (int ch = 0; ch < av_layout.nb_channels; ++ch) {
            // Check if the next sample would exceed the data length
            if ((i + 1) * bytes_per_sample > frame->linesize[ch]) {
                throw std::out_of_range("Sample index exceeds data length");
            }
            float sample = *((float*)(data[ch] + i * bytes_per_sample));
            decoded_audio_data_.push(sample);
        }
    }
}

linesize / frame->nb_samples 这个计算是用来得到每个样本的字节长度。这个计算假设 linesize 是每个通道的总字节长度。

然而,这个计算可能需要根据你的音频数据的格式进行调整。例如,如果你的音频数据是16位的,那么每个样本将占用2个字节。在这种情况下,你可能需要将 linesize 除以2来得到每个样本的字节长度。

所以,如果你的音频数据是16位的,你可能需要这样计算:

int bytes_per_sample = (linesize / frame->nb_samples) / 2;

这样,你就将 linesize 从字节转换为样本,然后再除以2来得到每个样本的字节长度。

在这个示例代码中,我们首先获取了音频帧的数据和行大小。然后,我们遍历了每个样本和每个通道的数据,将每个样本的数据转换为 PCM 数据,并将其添加到 decoded_audio_data_ 中。

4.3 音频帧数据的应用场景 (Application Scenarios of Audio Frame Data)

音频帧数据在多种应用场景中都有广泛的应用,以下是一些常见的应用场景:

  1. 音频播放:音频帧数据是音频播放的基础。在音频播放器中,我们需要解码音频文件,获取音频帧数据,然后将音频帧数据送入音频设备进行播放。
  2. 音频编辑:在音频编辑软件中,我们需要对音频帧数据进行各种处理,例如剪切、混音、添加效果等。这些操作都需要对音频帧数据进行读取和修改。
  3. 音频分析:在音频分析中,我们需要对音频帧数据进行各种计算,例如计算音频的频谱、节拍、音高等。这些计算都需要对音频帧数据进行读取。
  4. 音频转码:在音频转码中,我们需要将音频文件从一种编码格式转换为另一种编码格式。在这个过程中,我们需要解码原始音频文件,获取音频帧数据,然后将音频帧数据编码为新的格式。

以上是音频帧数据的一些常见应用场景。在实际应用中,音频帧数据的处理方法可能会根据具体需求而变化。在处理音频帧数据时,我们需要充分理解音频帧数据的结构和性质,以便正确地处理音频帧数据。

五、实战:使用 FFmpeg 进行音频解码与处理

5.1 准备工作:环境搭建与音频文件准备

在我们开始使用 FFmpeg 进行音频解码与处理之前,首先需要进行一些准备工作,包括环境搭建和音频文件的准备。

5.1.1 环境搭建

首先,我们需要在我们的计算机上安装 FFmpeg。FFmpeg 是一个开源项目,它的源代码可以在其官方网站上找到。我们可以选择下载预编译的二进制文件,也可以选择从源代码编译。在大多数情况下,下载预编译的二进制文件是最快捷的方式。

安装 FFmpeg 的步骤如下:

  1. 访问 FFmpeg 官方网站,下载适合你的操作系统的预编译的二进制文件。
  2. 将下载的文件解压到你的计算机上。
  3. 将 FFmpeg 的二进制文件添加到你的系统路径中。

安装完成后,你可以在命令行中输入 ffmpeg -version 来检查 FFmpeg 是否安装成功。如果安装成功,你将看到 FFmpeg 的版本信息。

5.1.2 音频文件准备

在我们开始音频解码与处理之前,我们还需要准备一些音频文件。这些音频文件可以是任何格式的,只要 FFmpeg 支持。你可以选择使用你自己的音频文件,也可以从互联网上下载一些免费的音频文件。

在选择音频文件时,你需要注意以下几点:

  1. 音频文件的格式:FFmpeg 支持大多数常见的音频格式,包括 MP3、WAV、AAC 等。你需要确保你的音频文件是 FFmpeg 支持的格式。
  2. 音频文件的质量:音频文件的质量会影响到解码和处理的结果。你需要选择质量较高的音频文件,以便得到更好的结果。
  3. 音频文件的内容:音频文件的内容会影响到你的音频处理任务。例如,如果你想进行语音识别,你需要选择包含人声的音频文件。

准备好音频文件后,你就可以开始使用 FFmpeg 进行音频解码与处理了。在下一节中,我们将介绍如何使用 FFmpeg 进行音频解码。

5.2 步骤一:音频解码

音频解码是将编码后的音频数据转换回原始的音频信号的过程。在 FFmpeg 中,我们可以使用 avcodec_receive_frame 函数来进行音频解码。

以下是音频解码的流程图:

5.2.1 创建解码器上下文 (Create Decoder Context)

首先,我们需要创建一个解码器上下文 (AVCodecContext)。解码器上下文是 FFmpeg 中用于存储解码器状态的结构体。我们可以使用 avcodec_alloc_context3 函数来创建一个新的解码器上下文。

AVCodec* codec = avcodec_find_decoder(AV_CODEC_ID_MP3);
AVCodecContext* codec_ctx = avcodec_alloc_context3(codec);

在这里,AV_CODEC_ID_MP3 是我们要解码的音频文件的编码格式。如果你的音频文件是其他格式,你需要使用相应的编码格式。

5.2.2 打开解码器 (Open Decoder)

创建解码器上下文后,我们需要使用 avcodec_open2 函数来打开解码器。

int ret = avcodec_open2(codec_ctx, codec, NULL);
if (ret < 0) {
    // 打开解码器失败,处理错误
}

5.2.3 接收解码后的帧 (Receive Decoded Frames)

然后,我们可以使用 avcodec_receive_frame 函数来接收解码后的帧。

AVFrame* frame = av_frame_alloc();
while (ret >= 0) {
    ret = avcodec_receive_frame(codec_ctx, frame);
    if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF) {
        break;
    } else if (ret < 0) {
        // 接收帧失败,处理错误
    }
    // 在此处处理解码后的帧(frame)数据
}

在这里,我们使用一个循环来接收所有的解码后的帧。每次循环,我们都会调用 avcodec_receive_frame 函数来接收一个解码后的帧。如果 avcodec_receive_frame 函数返回 AVERROR(EAGAIN)AVERROR_EOF,我们就跳出循环。如果 avcodec_receive_frame 函数返回其他负值,我们就处理错误。

5.2.4 处理解码后的帧 (Process Decoded Frames)

接收到解码后的帧后,我们就可以对其进行处理了。在下一节中,我们将详细介绍如何处理解码后的帧。

5.3 步骤二:音频帧数据处理

接收到解码后的帧 (AVFrame) 后,我们需要对其进行处理。这通常包括获取音频帧中的数据,处理这些数据,然后将处理后的数据添加到 decoded_audio_data_ 成员变量中。

以下是音频帧数据处理的流程图:

5.3.1 获取音频帧数据

首先,我们需要获取音频帧中的数据和行大小。我们可以通过 AVFrame 结构体的 extended_datalinesize 成员来获取这些信息。

uint8_t** data = frame->extended_data;
int linesize = frame->linesize[0];

在这里,extended_data 是一个指向音频帧数据的指针数组,linesize 是每个音频样本的大小。


深入浅出:FFmpeg 音频解码与处理AVFrame全解析(三)https://developer.aliyun.com/article/1465083

目录
相关文章
|
2月前
|
编解码 语音技术 内存技术
FFmpeg开发笔记(五十八)把32位采样的MP3转换为16位的PCM音频
《FFmpeg开发实战:从零基础到短视频上线》一书中的“5.1.2 把音频流保存为PCM文件”章节介绍了将媒体文件中的音频流转换为原始PCM音频的方法。示例代码直接保存解码后的PCM数据,保留了原始音频的采样频率、声道数量和采样位数。但在实际应用中,有时需要特定规格的PCM音频。例如,某些语音识别引擎仅接受16位PCM数据,而标准MP3音频通常采用32位采样,因此需将32位MP3音频转换为16位PCM音频。
85 0
FFmpeg开发笔记(五十八)把32位采样的MP3转换为16位的PCM音频
|
2月前
|
API
FFmpeg中AVPacket、AVFrame结构的基本使用
FFmpeg中AVPacket和AVFrame结构的内存分配、释放和引用计数处理,以及如何避免内存泄漏。
60 3
|
2月前
|
数据处理 Python
Python在音频传输中的应用实例解析
Python在音频传输中的应用实例解析
36 1
|
5月前
|
数据采集 大数据 Python
FFmpeg 在爬虫中的应用案例:流数据解码详解
在大数据背景下,网络爬虫与FFmpeg结合,高效采集小红书短视频。需准备FFmpeg、Python及库如Requests和BeautifulSoup。通过设置User-Agent、Cookie及代理IP增强隐蔽性,解析HTML提取视频链接,利用FFmpeg下载并解码视频流。示例代码展示完整流程,强调代理IP对避免封禁的关键作用,助你掌握视频数据采集技巧。
FFmpeg 在爬虫中的应用案例:流数据解码详解
|
4月前
|
开发者 图形学 C#
揭秘游戏沉浸感的秘密武器:深度解析Unity中的音频设计技巧,从背景音乐到动态音效,全面提升你的游戏氛围艺术——附实战代码示例与应用场景指导
【8月更文挑战第31天】音频设计在游戏开发中至关重要,不仅能增强沉浸感,还能传递信息,构建氛围。Unity作为跨平台游戏引擎,提供了丰富的音频处理功能,助力开发者轻松实现复杂音效。本文将探讨如何利用Unity的音频设计提升游戏氛围,并通过具体示例代码展示实现过程。例如,在恐怖游戏中,阴森的背景音乐和突然的脚步声能增加紧张感;在休闲游戏中,轻快的旋律则让玩家感到愉悦。
130 0
|
6月前
|
存储 编解码
FFmpeg开发笔记(三十)解析H.264码流中的SPS帧和PPS帧
《FFmpeg开发实战》书中介绍了音视频编码历史,重点讲述H.264的成功在于其分为视频编码层和网络抽象层。H.264帧类型包括SPS(序列参数集,含视频规格参数),PPS(图像参数集,含编码参数)和IDR帧(立即解码刷新,关键帧)。SPS用于计算视频宽高和帧率,PPS存储编码设置,IDR帧则标志新的解码序列。书中还配以图片展示各帧结构详情,完整内容可参考相关书籍。
268 7
FFmpeg开发笔记(三十)解析H.264码流中的SPS帧和PPS帧
|
5月前
|
语音技术 C语言 Windows
语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
|
6月前
|
Java Linux
ffmpeg音频格式转换、合成、速率调整
ffmpeg音频格式转换、合成、速率调整
131 2
|
6月前
|
编解码 Python
音频剪裁大师:使用 Python 和 ffmpeg 分割音频的完整指南
使用 Python 和 ffmpeg 进行音频文件分割。通过 `subprocess` 模块调用 ffmpeg 命令,定义 `split_audio` 函数,输入参数包括音频文件、起始时间、持续时间和输出文件名。函数构建命令行指令进行分割,然后执行。运行脚本,即可按指定时间从音频中提取片段。简单易用,适用于多种音频处理场景。
|
6月前
|
数据采集 前端开发 JavaScript
Python爬虫技术:动态JavaScript加载音频的解析
Python爬虫技术:动态JavaScript加载音频的解析

推荐镜像

更多