探索Python中的聚类算法:K-means

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 探索Python中的聚类算法:K-means

在机器学习领域中,聚类算法被广泛应用于数据分析和模式识别。K-means 是其中一种常用的聚类算法,它能够将数据集分成 K 个不同的组或簇。本文将详细介绍 K-means 算法的原理、实现步骤以及如何使用 Python 进行编程实践。

什么是 K-means?

K-means 是一种基于距离的聚类算法,它将数据集中的样本划分为 K 个不同的簇,使得同一簇内的样本之间的距离尽可能小,而不同簇之间的距离尽可能大。

K-means 的原理

K-means 算法的核心思想可以概括为以下几个步骤:

  • 初始化中心点:首先随机选择 K 个样本作为初始的聚类中心点。

  • 样本分配:对于每个样本,根据其与各个中心点的距离,将其分配到最近的簇中。

  • 更新中心点:对于每个簇,计算其中所有样本的均值,将其作为新的中心点。

  • 重复迭代:重复步骤 2 和步骤 3,直到达到最大迭代次数或者中心点不再发生变化。

  • 得到最终簇:最终得到 K 个簇,每个簇包含一组相似的样本。

Python 中的 K-means 实现

下面我们使用 Python 中的 scikit-learn 库来实现一个简单的 K-means 聚类模型:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

# 生成随机数据集
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 构建 K-means 聚类模型
kmeans = KMeans(n_clusters=4)

# 拟合数据
kmeans.fit(X)

# 预测数据所属的簇
y_kmeans = kmeans.predict(X)

# 绘制结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

# 绘制中心点
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)
plt.show()

在上述代码中,我们首先使用 scikit-learn 的 make_blobs 函数生成了一个随机的二维数据集。然后,我们构建了一个 K-means 聚类模型,并拟合了数据集。最后,我们使用散点图将数据集的样本点按照所属的簇进行了可视化,并标记了簇的中心点。

总结

K-means 算法是一种简单而有效的聚类算法,在许多实际问题中都有着广泛的应用。通过本文的介绍,你已经了解了 K-means 算法的原理、实现步骤以及如何使用 Python 进行编程实践。希望本文能够帮助你更好地理解和应用 K-means 算法。

目录
相关文章
|
10天前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
110 26
|
18天前
|
机器学习/深度学习 数据采集 算法
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
|
18天前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
117 4
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
|
18天前
|
算法 机器人 定位技术
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
【机器人路径规划】基于流场寻路算法(Flow Field Pathfinding)的机器人路径规划(Python代码实现)
机器学习/深度学习 算法 自动驾驶
141 0
|
26天前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)

推荐镜像

更多