Firefly:开源大模型训练工具助力AI技术进步,让你轻松训练各种主流大模型!

简介: Firefly:开源大模型训练工具助力AI技术进步,让你轻松训练各种主流大模型!

前言


近年来,随着人工智能技术的快速发展,大模型训练 成为了 AI领域 的热门话题之一。


在这个背景下,开源项目 Firefly 应运而生,为AI开发者提供了一站式大模型训练的‘场所’。


项目介绍


Firefly 是一款为AI开发者提供的一站式大模型训练工具。


GitHub:https://github.com/yangjianxin1/Firefly


作为一个开源项目,Firefly支持对多种主流大模型进行预训练、指令微调和DPO。


这些大模型包括Gemma、Qwen1.5、MiniCPM、Llama、InternLM、Baichuan、ChatGLM、Yi、Deepseek、Qwen、Orion、Ziya、Xverse、Mistral、Mixtral-8x7B、Zephyr、Vicuna和Bloom等。


Firefly 不仅支持全量参数训练,还提供了 LoRAQLoRA 高效训练的功能,同时支持预训练、SFT和DPO等多种训练方式。


特别值得一提的是,如果你的训练资源有限,Firefly团队极力推荐使用QLoRA进行指令微调。


他们在Open LLM Leaderboard上验证了该方法的有效性,并取得了非常不错的成绩。


这表明Firefly项目不仅提供了强大的功能,还在实践中得到了验证,为AI开发者提供了可靠的技术支持。


安装使用


需要提前将项目代码克隆下来,并安装相关版本的Python依赖包。


相关数据集和模型微调权重也需要下载存放在指定目录下(具体可前往项目中查看)


最后使用官方提供的指令运行(可以根据本地电脑配置选择合适的训练方式)


总结


总的来说,Firefly 作为一款开源的大模型训练工具,为AI领域的技术进步注入了新的活力。通过支持多种大模型和训练方式,为AI开发者提供了更多的选择和灵活性,助力他们在研究和实践中取得更好的成果。


相信随着Firefly项目的持续发展,AI技术未来前景也不可估量。

相关文章
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
35 3
|
3天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
AI与娱乐产业:电影制作的新工具
随着科技的发展,人工智能(AI)逐渐渗透到电影制作中,带来了前所未有的创新。本文探讨了AI在剧本创作、场景构建、特效制作、动作捕捉、音频处理、剪辑及市场调研等领域的应用,以及其对提升效率、激发创意和拓宽视野的影响,展望了AI在未来电影产业中的重要作用。
|
7天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
43 4
|
8天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
8天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
24 1
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
21 2
|
9天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!

热门文章

最新文章