umap:一个小巧而强大的Python库,探索高维数据的降维与可视化

简介: umap:一个小巧而强大的Python库,探索高维数据的降维与可视化

引言


在数据科学和机器学习领域,我们经常面对高维数据的挑战。高维数据不仅难以理解和可视化,而且会增加计算复杂性。


为了解决这一问题,我们可以利用降维技术 将高维数据映射到低维空间,以便更好地理解数据结构和进行进一步分析。


本篇文章小编将为小伙伴们介绍umap库,这是一个强大的Python第三方库,用于降维和可视化高维数据。


介绍


umap(Uniform Manifold Approximation and Projection) 是一种非线性降维技术,它能够在保留数据结构的同时将高维数据映射到低维空间。


工作原理:


umap基于一种称为“流形学习”的技术,该技术假设高维数据存在于一个低维流形上。通过在低维空间中找到数据的最佳表示。


umap算法结合了局部邻域结构全局拓扑信息,能够更好地捕捉数据的非线性结构。并且提供了简单易用的接口,可以帮助用户快速进行数据降维和可视化操作。


它核心算法基于一种随机邻域嵌入(Random Neighborhood Embedding,RNE)方法。该方法通过构建数据点的邻域图,并在低维空间中找到保持邻域关系的最优映射。


主要功能:


  • 降维:将高维数据映射到低维空间,同时保留数据的全局结构。
  • 可视化:通过将降维后的数据映射到二维或三维空间,可以创建数据的可视化表示。
  • 邻域保留:umap 试图保留数据点之间的邻域关系,从而保持数据的局部结构。
  • 可扩展性:umap 可以处理大规模数据集,并且在计算效率方面表现良好。


使用及应用


首先,我们需要安装umap库。可以使用pip来进行安装:

pip install umap-learn

接下来,我们可以使用UMAP库来对高维数据进行降维和可视化。下面是一个简单的示例代码:

import umap
from sklearn.datasets import load_digits
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 手写数字数据集
digits = load_digits()
data = digits.data
target = digits.target
# 使用UMAP进行降维
reducer = umap.UMAP()
embedding = reducer.fit_transform(data)
# 可视化降维后的数据
plt.scatter(embedding[:, 0], embedding[:, 1], c=target, cmap='Spectral', s=5)
plt.colorbar()
plt.show()
# 生成一个包含两个聚类的模拟数据集
X, y = make_moons(n_samples=2000, noise=0.05)
# 使用 UMAP 进行降维
reducer = umap.UMAP(n_components=2)
embedding = reducer.fit_transform(X)
# 可视化降维结果
plt.figure(figsize=(8, 6))
plt.scatter(embedding[:, 0], embedding[:, 1], c=y, cmap='viridis')
plt.title('UMAP Projection of Moon Data')
plt.show()

通过上面的代码,我们可以将手写数字数据集降维到二维空间,并用散点图展示数据的分布情况。

它还提供了许多参数和选项,可以根据具体需求对降维过程进行调整和优化。


umap在数据分析、聚类、分类、异常检测等领域都有广泛的应用。通过降维和可视化高维数据,我们可以更好地理解数据特征和结构,从而为后续的分析和建模工作提供更好的基础。


总结


umap库是一个强大的工具,可以帮助我们处理高维数据的降维和可视化问题。


通过结合局部邻域结构和全局拓扑信息,其算法能够更好地捕捉数据的非线性结构,为我们提供了一种有效的数据分析工具。


希望本文能够帮助小伙伴们更好地了解umap的基本原理和应用方法,从而在实际工作中更好地利用这一强大工具。

相关文章
|
21天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
56 20
|
11天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
179 77
|
17天前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
XML JSON 数据库
Python的标准库
Python的标准库
61 11
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
92 8
|
2月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
455 7
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。

热门文章

最新文章