Flink API的4个层次

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 【2月更文挑战第28天】

从纵向来看Flink中的API分为4个层次,从下而上,API层次越高,抽象程度越高,使用起来越方便,灵活性则会降低。

1、核心底层API

核心底层API提供了Flink的最底层的分布式计算构建块的操作API,包含了ProcessFunction、状态、时间和窗口等操作的API。

ProcessFunction是Flink提供的最具表现力的底层功能接口。Flink提供单流输入的ProcessFunction和双流输入的CoProcessFunction,能够对单个事件进行计算,也能够按照窗口对时间进行计算。

ProcessFunction提供对时间和状态的细粒度控制能力,它可以处理事件时间和处理时间两种时间概念,在时间上定义、修改触发回调函数的触发器。因此,ProcessFunction可以实现许多有状态计算中的复杂业务逻辑。

2、核心开发API (DataStream/DataSet API)

DataStream/DataSet使用Fluent风格API,提供了常见数据处理的API接口,如用户指定的各种转换形式,包括连接(Join)、聚合(Aggregation)、窗口(Window)、状态(State)等。在这些API中处理的数据类型以各自的编程语言定义为Class类(Java类或者Scala类)。同时为了提供灵活性,DataStream/DataSet中也提供了直接使用底层ProcessFunction的能力,使得一些特定的操作可以实现更低层次的抽象如DataSet API为有界数据集提供了额外的原函数(如循环/迭代)。

3、声明式DSL API

Table API是以表为中心的声明式领域专用语言(Domain Specified Language,DSL)。表是关系型数据库的概念,用在批处理中。

Table API遵循(扩展)关系模型,使用Schema定义元数据(与关系数据库中的表相似),提供Table API实现SQL操作,如select、project、join、group-by、aggregate等。Table API表达的是“应该做什么”的逻辑操作,而不是编写如何处理数据的底层代码。

此外,Table API程序还可以通过在执行之前使用SQL优化器进行优化。可以在表和DataStream/DataSet之间无缝转换,允许程序中混合使用Table API和DataStream/DataSet API。

4、结构化API

SQL是Flink的结构化API,是最高层次的计算API,与Table API基本等价,区别在于使用的方式。SQL与Table API可以混合使用,SQL可以操作Table API定义的表,Table API也能操作SQL定义的表和中间结果。


SQL对复杂逻辑的语义表达不如DataStream API,但是SQL也带来了不少好处。

  • 缩短上线周期

传统的实现流计算的方式是通过流计算平台提供的API进行编程的,包括确定需求、实现设计、编写代码、进行本地单元测试、进行集成测试,没有问题后部署上线等流程。整个开发过程中,开发人员不光要满足业务需求,还需要关注技术实现的细节,而使用SQL的方式后,开发人员只要关注业务需求即可,技术实现的细节可以交给SQL引擎去解析、编译、优化。最终,相比传统的通过编码实现流计算的方式,上线周期可以从数天缩短为数小时。

  • 更好地支持流计算需求的演变

随着业务需求持续不断的变化,编码方式的开发、测试、部署上线的周期不能很快的响应业务需求的变化,使用SQL则能够缩短开发、测试、部署的周期。

  • 自动调优

查询优化器可以为用户的SQL生成最高效的执行计划。用户不需要了解它就能自动享受优化器带来的性能提升。

  • 接口稳定

SQL拥有几十年的历史,是一个非常稳定的语言,很少有变动。所以升级引擎的版本、甚至替换成另一个引擎时,都可以做到兼容并且平滑地升级。

  • 易于理解

SQL的学习门槛很低,很多不同行业不同领域的人都懂SQL,用SQL作为跨团队的开发语言可以大大提高效率。

在Flink1.9及以后的版本中,Flink会在API层面上统一DataStream流处理API和DataSet批处理API,DataSet API会逐渐被废弃,未来会使用DataStream API统一表达流批两种处理,作为流批统一的计算引擎,这种做法是合理的。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
8月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
641 12
Flink CDC YAML:面向数据集成的 API 设计
|
7月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
213 5
|
SQL 分布式计算 测试技术
概述Flink API中的4个层次
【7月更文挑战第14天】Flink的API分为4个层次:核心底层API(如ProcessFunction)、DataStream/DataSet API、Table API和SQL。
|
SQL 关系型数据库 API
实时计算 Flink版产品使用问题之如何使用stream api
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
Kubernetes Oracle 关系型数据库
实时计算 Flink版操作报错合集之用dinky在k8s上提交作业,会报错:Caused by: org.apache.flink.table.api.ValidationException:,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
471 0
|
SQL 消息中间件 API
Flink关系型API的公共部分
关系型程序的公共部分 下面的代码段展示了Table&SQL API所编写流式程序的程序模式: val env = StreamExecutionEnvironment.getExecutionEnvironment //创建TableEnvironment对象 val tableEnv = TableEnvironment.
2815 0
|
2月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
375 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
11月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3257 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎