如何用Python装饰器让你的代码更加优雅,一文带你理解Python装饰器?

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 如何用Python装饰器让你的代码更加优雅,一文带你理解Python装饰器?

前言


当我们的Python代码变得越来越复杂时,就可能会发现需要在函数中添加一些 额外的功能,例如 日志记录、性能测试、输入合法性检查 等等。这时候,使用Python装饰器就可以让我们的代码更加优雅和可维护。


装饰器 是Python语言中的一种高级语法,它可以在不改变原有代码的情况下,动态地为函数或者类添加功能。


本文小编将介绍装饰器的实现原理、实现效果、适用场景,并且通过一些实际的例子来演示如何使用装饰器来增强函数的功能和修改函数的行为。同时还有一些高阶的装饰器用法,例如类装饰器、参数化装饰器、多个装饰器嵌套等等。


实现原理


装饰器 的实现原理是利用了Python中的 闭包函数对象 的特性。在Python中,函数和类都是一等公民,也就是说它们可以像普通变量一样被传递、赋值、作为参数和返回值。


装饰器实际上就是一个函数,它接受一个函数作为参数,并返回一个新的函数。在返回的新函数中,我们可以添加一些额外的功能,比如缓存函数、认证用户、记录日志、计时、权限验证等等。然后再将这个新函数返回,从而实现对原有函数的装饰。


实现效果


使用装饰器可以使代码更加简洁、优雅。在不改变原有代码的情况下,可以动态地添加、修改、删除函数的功能。同时,装饰器还可以提高代码的复用性和可维护性,使代码更加易读易懂。

例如,我们可以使用装饰器来给一个函数添加日志功能:

def log(func):
    def wrapper(*args, **kwargs):
        print(f"Calling {func.__name__} with args {args} and kwargs {kwargs}")
        return func(*args, **kwargs)
    return wrapper
@log
def add(a, b):
    return a + b
print(add(1, 2))

输出:

Calling add with args (1, 2) and kwargs
3

在上面的例子中,我们定义了一个log装饰器,它接受一个函数作为参数,并返回一个新的函数wrapper。在wrapper函数中,我们先打印出函数的名称和参数,然后再调用原有的函数,并将结果返回。最后,我们使用@log语法糖来装饰add函数,从而实现了给add函数添加日志功能的效果。


适用场景


装饰器可以用于很多场景,比如:


  1. 日志记录:记录函数的调用时间、参数和返回值等信息;
  2. 计时器:统计函数的执行时间;
  3. 缓存:缓存函数的计算结果,避免重复计算;
  4. 权限/身份验证:验证用户是否有权限执行某个函数;
  5. 错误处理:捕获函数执行过程中的异常,并进行处理等。
  6. 限制函数调用次数:给函数设定调用次数,单个进程或线程内或时间节点内不允许超出调用限制
  7. 重试:函数执行不符合预期时,进行重新调用执行


高阶用法


除了基本的装饰器语法外,还有一些高阶的用法,可以让装饰器更加灵活和强大。


1、带参数的装饰器


有些时候,我们需要给装饰器传递一些参数,比如日志的级别、缓存的大小等。为了实现带参数的装饰器,我们需要再定义一层函数,来接受装饰器的参数,然后返回一个真正的装饰器函数。

def log(level):
    def decorator(func):
        def wrapper(*args, **kwargs):
            print(f"[{level}] Calling {func.__name__} with args {args} and kwargs {kwargs}")
            return func(*args, **kwargs)
        return wrapper
    return decorator
@log(level="INFO")
def add(a, b):
    return a + b
print(add(1, 2))

输出:

[INFO] Calling add with args (1, 2) and kwargs
3

在上面的例子中,我们定义了一个带参数的装饰器log,它接受一个参数level,并返回一个真正的装饰器函数decorator。在decorator函数中,我们再定义一个wrapper函数,来实现日志记录的功能。最后,我们使用@log(level="INFO")语法糖来装饰add函数,并传递了一个参数level,从而实现了带参数的装饰器的效果。


2、类装饰器


除了函数装饰器外,Python中还支持类装饰器。类装饰器和函数装饰器的实现原理是一样的,只是它接受的参数是一个类,而不是一个函数。

class Log:
    def __init__(self, func):
        self.func = func
    def __call__(self, *args, **kwargs):
        print(f"Calling {self.func.__name__} with args {args} and kwargs {kwargs}")
        return self.func(*args, **kwargs)
@Log
def add(a, b):
    return a + b
print(add(1, 2))

输出:

Calling add with args (1, 2) and kwargs
3

在上面的例子中,我们定义了一个类装饰器Log,它接受一个函数作为参数,并在__call__方法中实现了日志记录的功能。最后,我们使用@Log语法糖来装饰add函数,并实现了类装饰器的效果。


3、多装饰器嵌套


多装饰器嵌套也是一种高级用法,可以在一个函数上应用多个装饰器,以实现更复杂的功能。装饰器可以嵌套在一起,以便一个函数可以被多个装饰器同时装饰。

例如,我们可以定义一个装饰器函数,用于记录函数的执行时间:

import time
def timer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"Time elapsed: {end_time - start_time:.2f} seconds")
        return result
    return wrapper

然后,我们可以定义另一个装饰器函数,用于缓存函数的结果:

def cache(func):
    cache_dict = {}
    def wrapper(*args, **kwargs):
        key = str(args) + str(kwargs)
        if key in cache_dict:
            print("Retrieving from cache...")
            return cache_dict[key]
        else:
            result = func(*args, **kwargs)
            cache_dict[key] = result
            return result
    return wrapper

现在,我们可以定义一个函数,并将它装饰上述两个装饰器:

@cache
@timer
def my_function(x, y):
    time.sleep(1)
    return x + y

这意味着当我们调用 my_function 时,它会先被 cache 装饰器装饰,然后再被 timer 装饰器装饰。这样,函数的结果会被缓存,并记录函数的执行时间。

我们可以测试一下这个函数:

>>> my_function(2, 3)
Time elapsed: 1.00 seconds
5
>>> my_function(2, 3)
Retrieving from cache...
5

可以看到,第一次调用函数时,它需要花费 1 秒钟的时间来执行。但是,第二次调用函数时,它会从缓存中获取结果,而不需要再次执行函数。


总结


Python装饰器是一种强大且灵活的机制,允许我们灵活的增强函数的功能和修改函数的行为。学会使用装饰器可以使你的代码更加健壮,具有更好的可重用性。同时,高阶装饰器可以让你更灵活的处理多种需求。在实际开发中,我们可以根据具体的需求,来选择合适的装饰器,并使用高阶用法来实现更加灵活和强大的功能。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
12天前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
44 11
|
9天前
|
设计模式 缓存 开发者
深入浅出Python装饰器
【10月更文挑战第39天】本文将通过浅显易懂的语言和生动的比喻,带你探索Python中一个神奇而又强大的特性——装饰器。我们将一起揭开装饰器的神秘面纱,了解它的工作原理,并通过实际代码示例学习如何应用它来美化我们的代码。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开一扇新的大门,让你的代码更加优雅和高效。
|
9天前
|
缓存 测试技术 数据库
深入理解Python中的装饰器
在本文中,我们将探讨Python语言中一个强大而灵活的特性——装饰器。装饰器允许开发者在不修改原有函数或方法代码的情况下增加额外的功能,这大大提高了代码的复用性和可读性。通过具体示例和应用场景的讲解,本篇文章旨在为读者提供一个关于如何使用装饰器的全面指南,包括装饰器的定义、使用场景、以及如何自定义装饰器等内容。
|
4天前
|
开发框架 缓存 测试技术
Python中的装饰器:魔法般的功能增强
在Python编程中,装饰器是一种强大而灵活的工具,它允许开发者修改或扩展函数和类的行为。本文将深入探讨Python装饰器的工作原理,并通过实例演示如何创建和使用自定义装饰器来增强代码的功能性和可读性。我们将从基础概念讲起,逐步深入到高级应用,揭示装饰器背后的“魔法”,并展示它们在实际开发中的多种用途。
|
9天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
12天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
8天前
|
设计模式 缓存 开发框架
Python中的装饰器:从入门到实践####
本文深入探讨了Python中装饰器的工作原理与应用,通过具体案例展示了如何利用装饰器增强函数功能、提高代码复用性和可读性。读者将学习到装饰器的基本概念、实现方法及其在实际项目开发中的实用技巧。 ####
20 3
|
9天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
16 1
|
9天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
12天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
27 2