神经网络算法 —— 一文搞懂Transformer !!

简介: 神经网络算法 —— 一文搞懂Transformer !!

前言

本文将从 Transformer的本质、Transformer的原理 和 Transformer架构改进三个方面,搞懂Transformer。


一、Transformer的本质

1. Transformer架构

主要由输入部分(输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

Transformer架构

(1)输入部分

  • 源文本嵌入层:将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系。
  • 位置编码层:为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息。
  • 目标文本嵌入层(在解码器中使用):将目标文本中的词汇数字表示转换为向量表示。

(2)编码器部分

  • 由N个编码器层堆叠而成。
  • 每个编码器层由两个子层连接结构组成:第一个子层是多头自注意力子层,第二个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

(3)解码器部分

  • 由N个解码器层堆叠而成。
  • 每个解码器层由三个子层连接结构组成:第一个子层是一个带掩码的多头自注意力子层,第二个子层是一个多头注意力子层(编码器到解码器),第三个子层是一个前馈全连接层。每个子层后都接有一个规范化层和一个残差连接。

(4)输出部分

  • 线性层:将解码器输出的向量转换为最终的输出维度。
  • Softmax层:将线性层的输出转换为概率分布,以便进行最终的预测。

2. Encoder-Decoder(编码器-解码器)

左边是N个编码器,右边是N个解码器,Transformer中的N为6

Encoder-Decoder (编码器-解码器)

(1)Encoder 编码器

  • Transformer中的编码器部分一共6个相同的编码器层组成。
  • 每个编码器层都有两个子层,即多头自注意力层(Multi-Head Attention)层和逐位置的前馈神经网络(Position-wise Feed-Forward Network)。在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为 Add&Norm 操作。

Encoder(编码器)架构

(2)Decoder 解码器

Transformer中的解码器部分同样有6个相同的解码器层组成。

每个解码器层都有三个子层,掩码自注意力层(Masked Self-Attention)、Encoder-Decoder自注意力层、逐位置的前馈神经网络。同样,在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为 Add&Norm操作。

Decoder(解码器)架构

二、Transformer的原理

Transformer工作原理

1. Multi-Head Attention(多头自注意力)

它允许模型同时关注来自不同位置的信息。通过分割原始的输入向量到多个头(head),每个头都能独立地学习不同的注意力权重,从而增强模型对输入序列中的不同部分的关注能力。

Multi-Head Attention(多头自注意力)

(1)输入线性变换

对于输入的Query(查询)、Key(键)和Value(值)向量,首先通过线性变换将它们映射到不同的子空间。这些线性变换的参数是模型需要学习的。

(2)分割多头

经过线性变换后,Query、Key和Value向量被分割成多个头。每个头部都会独立地进行注意力计算。

(3)缩放点积注意力

在每个头内部,使用缩放点积注意力来计算Query和Key之间的注意力分数。这个分数决定了在生成输出时,模型应该关注Value向量的部分。

(4)注意力权重应用

将计算出的注意力权重应用于Value向量,得到加权的中间输出。这个过程可以理解为根据注意力权重对输入信息进行筛选和聚焦。

(5)拼接和线性变换

将所有头的加权输出拼接在一起,然后通过一个线性变换得到最终的Multi-Head Attention输出。

2. Scaled Dot-Product Attention(缩放点积注意力)

它是Transformer模型中的多头注意力机制的一个关键组成部分。

Scaled Dot-Product Attention(缩放点积注意力)

(1)Query、Key和Value矩阵

Query矩阵(Q):表示当前的关注点或信息需求,用于与Key矩阵进行匹配。

Key矩阵(K):包含输入序列中各个位置的标识信息,用于被Query矩阵查询匹配。

Value矩阵(V):存储了与Key矩阵相对应的实际值或信息内容,当Query与某个Key匹配时,相应的Value将被用来计算输出。

(2)点积计算

通过计算Query矩阵和Key矩阵之间的点积(即对应元素相乘后求和),来衡量Query与每个Key之间的相似度或匹配程度。

(3)缩放因子

由于点积操作的结果可能非常大,尤其是在输入维度较高的情况下,这可能导致softmax函数在计算注意力权重时进入饱和区。为了避免这个问题,缩放点积注意力引入了一个缩放因子,通常是输入维度的平方根。点积结果除以这个缩放因子,可以使得softmax函数的输入保持在一个合理的范围内。

(4)Softmax函数

将缩放后的点积结果输入到softmax函数中,计算每个Key相对于Query的注意力权重。Softmax函数将原始得分转换为概率分布,使得所有的Key的注意力权重之和为1。

(5)加权求和

使用计算出的注意力权重对Value矩阵进行加权求和,得到最终的输出。这个过程根据注意力权重的大小,将更多的关注放在与Query更匹配的Value上。

三、Transformer架构改进

1. BERT

BERT 是一种基于Transformer的预训练语言模型,它的最大创新之处在于引入了 双向Transformer编码器 ,这使得模型可以同时考虑输入序列的前后上下文信息。

BERT架构

(1)输入层(Embedding)

Token Embeddings:将单词或字词转换为固定维度的向量。

Segment Embeddings:用于区分句子对中的不同句子。

Position Embeddings:由于Transformer模型本身不具备处理序列顺序的能力,所有需要加入位置嵌入来提供序列中单词的位置信息。

(2)编码层(Transformer Encoder)

BERT模型使用双向Transformer编码器进行编码。

(3)输出层(Pre-trained Task-specific Layers)

MLM输出层:用于预测被掩码(masked)的单词。在训练阶段,模型会随机遮盖输入序列中的部分单词,并尝试根据上下文预测这些单词。

NSP输出层:用于判断两个句子是否为连续的句子对。在训练阶段,模型会接收成对的句子作为输入,并尝试预测第二个句子是否是第一个句子的后续句子。

2. GPT

GPT 也是一种基于Transformer的预训练语言模型,它的最大创新之处在于使用了 单向Transformer编码器,这使得模型可以更好地捕捉输入序列的上下文信息。

(1)输入层(Input Embedding)

将输入的单词或符号转换为固定维度的向量表示。

可以包括词嵌入、位置嵌入等,以提供单词的语义信息和位置信息。

(2)编码层(Transformer Encoder)

GPT模型使用单向Transformer编码器进行编码和生成。

(3)输出层(Output Linear and Softmax)

线性输出层将最后一个Transformer Decoder Block的输出转换为词汇表大小的向量。

Softmax函数将输出向量转换为概率分布,以便进行词汇选择或生成下一个单词。

来源:架构师带你玩转AI

目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
214 55
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
144 80
|
5天前
|
机器学习/深度学习 网络架构
揭示Transformer重要缺陷!北大提出傅里叶分析神经网络FAN,填补周期性特征建模缺陷
近年来,神经网络在MLP和Transformer等模型上取得显著进展,但在处理周期性特征时存在缺陷。北京大学提出傅里叶分析网络(FAN),基于傅里叶分析建模周期性现象。FAN具有更少的参数、更好的周期性建模能力和广泛的应用范围,在符号公式表示、时间序列预测和语言建模等任务中表现出色。实验表明,FAN能更好地理解周期性特征,超越现有模型。论文链接:https://arxiv.org/pdf/2410.02675.pdf
88 68
|
4天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
28天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
150 30
|
16天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
34 12
|
23天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。