有大佬知道在使用flink cdc实现数据同步,如何实现如果服务停止了对数据源表的某个数据进行删除操作,重启服务之后目标表能进行对源表删除的数据进行删除吗?

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【2月更文挑战第27天】有大佬知道在使用flink cdc实现数据同步,如何实现如果服务停止了对数据源表的某个数据进行删除操作,重启服务之后目标表能进行对源表删除的数据进行删除吗?

有大佬知道在使用flink cdc实现数据同步,如何实现如果服务停止了对数据源表的某个数据进行删除操作,重启服务之后目标表能进行对源表删除的数据进行删除吗?

Flink CDC(Change Data Capture)可以捕获源数据库的变更事件,包括插入、更新和删除操作。当Flink CDC连接到源数据库时,它会监听源数据库的binlog(二进制日志),当源数据库发生变更时,Flink CDC会将这些变更事件发送到Flink Streaming中。

对于你的问题,如果服务停止时源表发生了删除操作,那么这些删除操作对应的变更事件将会被保存在Flink CDC的变更日志中。当服务重启时,Flink CDC会从变更日志中读取这些未处理的变更事件,并将它们发送到Flink Streaming中。因此,如果你的Flink Streaming作业配置了正确的逻辑来处理这些删除事件(例如,使用Table API或DataStream API中的remove()函数),那么它应该能够正确地处理这些删除操作。

具体来说,你可以使用Flink CDC提供的SourceFunction来读取源数据库的变更事件,然后使用DataStream API中的remove()函数来处理这些删除事件。例如:

FlinkSourceConnectorCdc.SourceFunction sourceFunction = ...; // 创建CDC的SourceFunction
DataStream<RowData> changeEvents = ...; // 从sourceFunction获取变更事件
DataStream<RowData> deletedEvents = changeEvents
    .filter(new FilterFunction<RowData>() {
   
        @Override
        public boolean filter(RowData row) throws Exception {
   
            return row.getRowKind() == RowKind.DELETE;
        }
    });
deletedEvents.addSink(new SinkFunction() {
   
    @Override
    public void invoke(Object value) throws Exception {
   
        // 处理删除事件
    }
});

在这个例子中,我们首先创建了一个FlinkSourceConnectorCdc的SourceFunction来读取源数据库的变更事件,然后我们过滤出删除事件,并将它们添加到一个sink中进行处理。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
1月前
|
存储 Kubernetes 调度
Flink 批作业如何在 Master 节点出错重启后恢复执行进度?
本文由阿里云研发工程师李俊睿撰写,介绍了Flink 1.20版中新引入的批作业进度恢复功能。文章涵盖背景、解决思路、使用效果及启用方法。此前,若JobMaster故障,批作业需重头开始,造成进度丢失。新功能通过将JM状态持久化至外部存储并在故障后利用这些状态恢复作业进度,避免了这一问题。使用该功能需启用集群高可用并配置相关参数。
171 0
Flink 批作业如何在 Master 节点出错重启后恢复执行进度?
|
3月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之两个数据表是否可以同时进行双向的数据同步
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用问题之Oracle数据库是集群部署的,怎么进行数据同步
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
Oracle 关系型数据库 分布式数据库
实时计算 Flink版产品使用问题之怎么实现跨多个DRDS的数据同步
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
SQL Prometheus 监控
实时计算 Flink版产品使用问题之作业频繁重启该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
820 7
阿里云实时计算Flink在多行业的应用和实践
|
15天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
679 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
3月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。