【C++】—— 特殊类设计

简介: 【C++】—— 特殊类设计



序言

特殊类设计是指在面向对象编程中,根据特定需求或情况,创建具备特殊功能或属性的类。特殊类设计旨在解决特定问题或满足特殊需求,使代码更加灵活和可扩展。


(一)设计一个不能被拷贝的类

拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝只需让该类不能调用拷贝构造函数以及赋值运算符重载即可

接下来,我们分别从C++98和C++11的两种场景去看二者是如何实现:

【C++98】:将拷贝构造函数与赋值运算符重载只声明不定义,并且将其访问权限设置为私有即可

  • 代码如下:
class CopyBan
{
private:
  CopyBan(const CopyBan&); // 声明拷贝构造函数为私有
  CopyBan& operator=(const CopyBan&); // 声明拷贝赋值运算符为私有
public:
  CopyBan() {} // 默认构造函数
};

【解释说明】

  1. 设置成私有:如果只声明没有设置成private,用户自己如果在类外定义了,就可以不能禁止拷贝了
  2. 只声明不定义:不定义是因为该函数根本不会调用,定义了其实也没有什么意义,不写反而还简单,而且如果定义了就不会防止成员函数内部拷贝了。

使用该类时,只需简单地继承它即可:

class MyClass : public CopyBan{
    // 类的定义
};

【C++11】:C++11扩展delete的用法,delete除了释放new申请的资源外,如果在默认成员函数后跟上=delete,表示让编译器删除掉该默认成员函数。

  • 代码如下:
class CopyBan
{
  //.....
  CopyBan(const CopyBan&) = delete;     // 删除拷贝构造函数
  CopyBan& operator=(const CopyBan&) = delete; // 删除拷贝赋值运算符
  //.....
};

【解释说明】

  1. 在上面的示例中,我们定义了一个名为 CopyBan 的类。通过将拷贝构造函数和拷贝赋值运算符声明为 delete ,我们禁用了对象的拷贝功能;
  2. 这样一来,任何试图拷贝 CopyBan 类型对象的操作都会在编译时引发错误。

 

同样的使用该类时,只需简单地继承它即可:

class MyClass : public CopyBan{
    // 类的定义
};
  • 在这个示例中,MyClass 继承了CopyBan 类。但是,由于基类CopyBan 禁用了拷贝构造函数和赋值运算符函数,所以无法对 MyClass 进行拷贝操作。

【小结】

  • 使用这种设计,你可以确保该类的实例不会被拷贝,从而避免不必要的对象复制和可能引发的错误。

(二)设计一个只能在堆上创建对象的类

实现方式:

  • 将类的构造函数私有,拷贝构造声明成私有。防止别人调用拷贝在栈上生成对象。
  • 提供一个静态的成员函数,在该静态成员函数中完成堆对象的创建。

【C++98】 :

  • 代码如下:
class HeapOnly
{
public:
  static HeapOnly* CreateObject()
  {
    return new HeapOnly();
  }
private:
  HeapOnly() {}   // 私有化默认构造函数
  // C++98
  // 1.只声明,不实现。因为实现可能会很麻烦,而你本身不需要
  // 2.声明成私有
  HeapOnly(const HeapOnly&);
};

【C++11】:

  • 代码如下:
class HeapOnly
{
public:
  static HeapOnly* CreateObject()
  {
    return new HeapOnly();
  }
private:
  HeapOnly() {}   // 私有化默认构造函数
  // C++11
  HeapOnly(const HeapOnly&) = delete;
};

【解释说明】

  1. 在 C++11 标准之后,可以使用 = delete 来删除复制构造函数,而不仅仅是将其声明为私有;
  2. 这种方式更加清晰明了,使得代码更具可读性和表达性。因此,推荐使用 C++11 及以上版本的标准来实现这样的需求。

这样,你就可以使用下面的代码在堆上创建 HeapOnly 类对象:

HeapOnly* obj = HeapOnly::CreateObject();

请确保在使用完对象后手动调用 delete 来释放内存:

delete obj;

 

【小结】

  • 这样设计的类将只能在堆上创建对象,并且无法通过拷贝或赋值的方式创建新对象,从而确保了对象的唯一性和创建方式的约束。

(三)设计一个只能在栈上创建对象的类

实现方法:

  • 要设计一个只能在栈上创建对象的类,可以使用私有的析构函数和公有的静态成员函数来实现。

【C++98】 :

  • 代码如下:
class StackOnly 
{
public:
    static StackOnly CreateObj() {
        return StackOnly();
    }
private:
    StackOnly() {} // 私有化默认构造函数
    ~StackOnly() {} // 私有化析构函数
};

【解释说明】

  1. 在上面的示例中,我们将默认构造函数和析构函数私有化。这意味着外部无法直接实例化或销毁 StackOnly 类的对象。
  2. 为了能够创建对象,我们提供了一个名为 CreateObj 的公有静态成员函数。该函数返回一个 StackOnly 类型的对象。

使用代码示例:

StackOnly obj = StackOnly::CreateObj();
  • 这样就确保了 StackOnly 类的对象只能在栈上创建,因为无法直接访问私有的默认构造函数;
  • 对象的析构由编译器自动处理(不需要手动调用delete释放内存),当对象超出作用域时会自动调用析构函数进行资源的释放。

【C++11】:可以使用删除特殊成员函数以及阻止使用new和delete操作符的方式来实现只能在栈上创建对象的类。

  • 代码如下:
class StackOnly
{
public:
    StackOnly() = default; // 允许默认构造函数
    // 删除拷贝构造函数和赋值运算符函数
    StackOnly(const StackOnly&) = delete;
    StackOnly& operator=(const StackOnly&) = delete;
    // 禁止使用new和delete操作符
    void* operator new(size_t) = delete;
    void operator delete(void*) = delete;
};

使用代码示例:

StackOnly obj1; // 在栈上创建对象
// 下面的代码将导致编译错误,因为拷贝构造函数被删除
// StackOnly obj2 = obj1;
// 下面的代码将导致编译错误,因为赋值运算符函数被删除
// StackOnly obj3;
// obj3 = obj1;
// 下面的代码将导致编译错误,因为使用了删除的new运算符
// StackOnly* ptr = new StackOnly;
// 下面的代码将导致编译错误,因为使用了删除的delete运算符
// delete ptr;

【解释说明】

  • 这样设计的类将只能在栈上创建对象,并且无法通过拷贝或赋值的方式创建新对象,同时禁止使用newdelete来分配和释放对象的内存,从而确保了对象的唯一性和创建方式的限制。

除了上述方法之外,还有一种比较奇特的方式,可以用于实现只能在栈上创建对象的类。这种方式是通过定义一个私有化的 operator newoperator delete 函数来实现无需删除构造函数和析构函数

  • 代码如下:
class StackOnly 
{
public:
    // 在 public 区域声明 operator new 和 operator delete 函数
    static void* operator new(size_t size) = delete; // 删除 operator new 函数
    static void operator delete(void* ptr) noexcept = delete; // 删除 operator delete 函数
private:
    // 私有化所有构造、析构函数,包括默认构造函数
    StackOnly() {}
    StackOnly(const StackOnly&) {}
    ~StackOnly() {}
};

【解释说明】

  1. 在上面的示例中,将构造函数和析构函数都设为了私有的,防止对象在堆上创建或销毁。同时,我们在公有区域声明了一个删除的 operator new 和 operator delete 函数,这些函数用于在堆上分配内存和释放内存。
  2. 由于默认情况下类的 operator new 和 operator delete 函数都是 public 的,因此我们要重新定义它们。而将其声明为 delete,则完全禁止直接在堆上分配和释放内存,从而避免对象在堆上创建。

使用该类时,只能通过栈上的对象进行操作:

StackOnly obj;

【注意】

  • 确保了 StackOnly 类的对象只能在栈上创建。但是这种方法需要注意的是,在某些情况下,可能会因为需要使用 operator new 和 operator delete 函数而无法编译通过,因此使用时需要慎重考虑。

(四)设计一个不能被继承的类

实现方法:

  • 在使用 C++98 标准时,可以通过将构造函数和析构函数设为私有,并且不提供公共的静态工厂方法来实现一个不能被继承的类。

【C++98】 :

  • 代码如下:
class NonInherit
{
private:
    NonInherit() {}
    ~NonInherit() {}
public:
    // 禁止通过静态工厂方法创建对象
    static NonInherit* GetInstance() {
        return NULL;
    }
};

实现方法:

  • 在C++11以及后续的标准中,你可以在类声明的末尾添加关键字final,来显式地指示该类是不可被继承的。

【C++11】:

  • 代码如下:
class A final
{
    // ....
};

【解释说明】

  1. 在上述示例中,我们在类的定义前使用了 final关键字,将 A声明为最终类。这意味着其他类无法从A继承。
  2. 如果其他类尝试继承 A,编译器将会报错。

例如:

class A final 
{
  //...
};
class B : public A { // 编译错误
  // 类定义
};

报错如下:


总结

这些特殊类的设计目的是根据特定的需求和编程场景来确定的;

它们有助于代码的组织、可维护性、可扩展性和重用性。通过合理地设计和使用这些特殊类,可以提高代码的质量、可读性和可靠性。

到此,关于本期特殊类设计便讲解结束了。感谢大家的观看和支持!!!

相关文章
|
1天前
|
编译器 C语言 C++
|
1天前
|
编译器 C++
【C++】详解初始化列表,隐式类型转化,类静态成员,友元
【C++】详解初始化列表,隐式类型转化,类静态成员,友元
|
4天前
|
存储 编译器 C++
【C++】类和对象④(再谈构造函数:初始化列表,隐式类型转换,缺省值
C++中的隐式类型转换在变量赋值和函数调用中常见,如`double`转`int`。取引用时,须用`const`以防修改临时变量,如`const int& b = a;`。类可以有隐式单参构造,使`A aa2 = 1;`合法,但`explicit`关键字可阻止这种转换。C++11起,成员变量可设默认值,如`int _b1 = 1;`。博客探讨构造函数、初始化列表及编译器优化,关注更多C++特性。
|
4天前
|
编译器 C++
【C++】类和对象④(类的默认成员函数:取地址及const取地址重载 )
本文探讨了C++中类的成员函数,特别是取地址及const取地址操作符重载,通常无需重载,但展示了如何自定义以适应特定需求。接着讨论了构造函数的重要性,尤其是使用初始化列表来高效地初始化类的成员,包括对象成员、引用和const成员。初始化列表确保在对象创建时正确赋值,并遵循特定的执行顺序。
|
4天前
|
C语言 C++
【C++】日期类Date(详解)③
该文介绍了C++中直接相减法计算两个日期之间差值的方法,包括确定max和min、按年计算天数、日期矫正及计算差值。同时,文章讲解了const成员函数,用于不修改类成员的函数,并给出了`GetMonthDay`和`CheckDate`的const版本。此外,讨论了流插入和流提取的重载,需在类外部定义以符合内置类型输入输出习惯,并介绍了友元机制,允许非成员函数访问类的私有成员。全文旨在深化对运算符重载、const成员和流操作的理解。
|
4天前
|
C++
【C++】日期类Date(详解)②
- `-=`通过复用`+=`实现,`Date operator-(int day)`则通过创建副本并调用`-=`。 - 前置`++`和后置`++`同样使用重载,类似地,前置`--`和后置`--`也复用了`+=`和`-=1`。 - 比较运算符重载如`>`, `==`, `<`, `<=`, `!=`,通常只需实现两个,其他可通过复合逻辑得出。 - `Date`减`Date`返回天数,通过迭代较小日期直到与较大日期相等,记录步数和符号。 ``` 这是236个字符的摘要,符合240字符以内的要求,涵盖了日期类中运算符重载的主要实现。
|
4天前
|
定位技术 C语言 C++
C++】日期类Date(详解)①
这篇教程讲解了如何使用C++实现一个日期类`Date`,涵盖操作符重载、拷贝构造、赋值运算符及友元函数。类包含年、月、日私有成员,提供合法性检查、获取某月天数、日期加减运算、比较运算符等功能。示例代码包括`GetMonthDay`、`CheckDate`、构造函数、拷贝构造函数、赋值运算符和相关运算符重载的实现。
|
4天前
|
编译器 C++
【C++】类和对象③(类的默认成员函数:赋值运算符重载)
在C++中,运算符重载允许为用户定义的类型扩展运算符功能,但不能创建新运算符如`operator@`。重载的运算符必须至少有一个类类型参数,且不能改变内置类型运算符的含义。`.*::sizeof?`不可重载。赋值运算符`=`通常作为成员函数重载,确保封装性,如`Date`类的`operator==`。赋值运算符应返回引用并检查自我赋值。当未显式重载时,编译器提供默认实现,但这可能不足以处理资源管理。拷贝构造和赋值运算符在对象复制中有不同用途,需根据类需求定制实现。正确实现它们对避免数据错误和内存问题至关重要。接下来将探讨更多操作符重载和默认成员函数。
|
4天前
|
存储 编译器 C++
【C++】类和对象③(类的默认成员函数:拷贝构造函数)
本文探讨了C++中拷贝构造函数和赋值运算符重载的重要性。拷贝构造函数用于创建与已有对象相同的新对象,尤其在类涉及资源管理时需谨慎处理,以防止浅拷贝导致的问题。默认拷贝构造函数进行字节级复制,可能导致资源重复释放。例子展示了未正确实现拷贝构造函数时可能导致的无限递归。此外,文章提到了拷贝构造函数的常见应用场景,如函数参数、返回值和对象初始化,并指出类对象在赋值或作为函数参数时会隐式调用拷贝构造。
|
4天前
|
存储 编译器 C语言
【C++】类和对象②(类的默认成员函数:构造函数 | 析构函数)
C++类的六大默认成员函数包括构造函数、析构函数、拷贝构造、赋值运算符、取地址重载及const取址。构造函数用于对象初始化,无返回值,名称与类名相同,可重载。若未定义,编译器提供默认无参构造。析构函数负责对象销毁,名字前加`~`,无参数无返回,自动调用以释放资源。一个类只有一个析构函数。两者确保对象生命周期中正确初始化和清理。