Linux--程序地址空间

简介: Linux--程序地址空间

程序地址空间

程序地址空间是指操作系统中为每个运行的程序分配的内存区域。它包括了程序的代码、数据和堆栈每个部分。

在32位平台下,程序地址空间的大小为2^32,即4GB。这将是程序可以访问的最大内存范围。

程序地址空间通常被划分为不同的段:

程序地址空间的具体分布方式会因为操作系统和编译器的不同而有所差异。然而,不管具体分布方式如何,所有程序都必须在程序地址空间中找到自己的位置来执行和存储数据。

程序地址空间的大小和布局对程序的执行和性能有重要影响。合理利用和管理程序地址空间可以提高程序的运行效率和资源利用率

下面通过地址来验证地址空间的分布:

int g_unval;
137 int g_val=100;
138                                                                                                               
139 int main(int argc,char *argv[],char *env[])
140 {
141   printf("code addr:%p\n",main);
142   printf("init data addr: %p\n",&g_val);
143   printf("uninit data addr: %p\n",&g_unval);
144 
145   char *heap=(char*)malloc(20);
146   char *heap1=(char*)malloc(20);
147   char *heap2=(char*)malloc(20);
148   char *heap3=(char*)malloc(20);
149   static int c;
150   printf("heap addr: %p\n",heap);
151   printf("heap1  addr: %p\n",heap1);
152   printf("heap2 addr: %p\n",heap2);
153   printf("heap3 addr: %p\n",heap3) ;
154 
155   printf("stack addr: %p\n",&heap);
156   printf("stack addr: %p\n",&heap1);                                                                          
157   printf("stack addr: %p\n",&heap2);
158   printf("stack addr: %p\n",&heap3);
159   printf("c addr: %p, c: %d\n",&c,c);
160   int i;
161   for(i=0;argv[i];i++)
162   {
163     printf("argv[%d]=%p\n",i,argv[i]);
164   }
165   for(i=0;env[i];i++)
166   {
167     printf("end[%d]=%p\n",i,env[i]);
168   }
169 
170   return 0;
171   
172 }

虚拟地址

虚拟地址是计算机中用来表示内存地址的一种抽象概念,它是相对于实际物理内存地址空间而言的。

下面我们先来看个代码:

int g_gal=100;
int main()
{
  pid_t id=fork();
  if(id==0)
  {
    int cnt=0;
    while(1)
    {                                                                                                         
      printf("child , pid %d,ppid %d, g_gal %d &g_gal %p\n",getpid(),getppid(),g_gal,&g_gal);
      sleep(1);
      cnt++;
      if(cnt==5)
      {
        g_gal=200;
        printf("child change g_val: 100->200\n");
      }
    }
  }
  else 
  {                                                                                                           
    while(1)
      {
        printf("father pid %d ppid %d g_gal %d &g_gal %p\n",getpid(),getppid(),g_gal,&g_gal);
        sleep(1);
        
      }
  }
  return 0;
}

结果:

这里的拷贝称为写时拷贝:

在操作系统中,每个进程都有自己独立的虚拟地址空间,这个虚拟地址空间可以看作是进程可以使用的内存空间。虚拟地址由两部分组成:页号和页内偏移量(即页表)。操作系统使用页表来将虚拟地址映射到实际的物理内存地址,这样就可以实现不同进程之间的地址隔离和内存保护。

相关文章
|
5天前
|
Linux 开发工具 C语言
Linux 安装 gcc 编译运行 C程序
Linux 安装 gcc 编译运行 C程序
24 0
|
18天前
|
安全 Linux 虚拟化
网络名称空间在Linux虚拟化技术中的位置
网络名称空间(Network Namespaces)是Linux内核特性之一,提供了隔离网络环境的能力,使得每个网络名称空间都拥有独立的网络设备、IP地址、路由表、端口号范围以及iptables规则等。这一特性在Linux虚拟化技术中占据了核心位置🌟,它不仅为构建轻量级虚拟化解决方案(如容器📦)提供了基础支持,也在传统的虚拟机技术中发挥作用,实现资源隔离和网络虚拟化。
网络名称空间在Linux虚拟化技术中的位置
|
18天前
|
网络协议 安全 Linux
Linux网络名称空间之独立网络资源管理
Linux网络名称空间是一种强大的虚拟化技术🛠️,它允许用户创建隔离的网络环境🌐,每个环境拥有独立的网络资源和配置。这项技术对于云计算☁️、容器化应用📦和网络安全🔒等领域至关重要。本文将详细介绍在Linux网络名称空间中可以拥有的独立网络资源,并指出应用开发人员在使用时应注意的重点。
|
18天前
|
安全 网络协议 Linux
Linux网络名称空间概述
Linux网络名称空间是操作系统级别的一种虚拟化技术🔄,它允许创建隔离的网络环境🌐,使得每个环境拥有自己独立的网络资源,如IP地址📍、路由表🗺️、防火墙规则🔥等。这种技术是Linux内核功能的一部分,为不同的用户空间进程提供了一种创建和使用独立网络协议栈的方式。本文旨在全方面、多维度解释Linux网络名称空间的概念、必要性和作用。
Linux网络名称空间概述
|
1月前
|
存储 Shell Linux
【Shell 命令集合 磁盘维护 】Linux 创建一个用作交换空间(swap space)的特殊文件或设备 mkswap命令使用教程
【Shell 命令集合 磁盘维护 】Linux 创建一个用作交换空间(swap space)的特殊文件或设备 mkswap命令使用教程
34 0
|
4天前
|
Java Shell Linux
【linux进程控制(三)】进程程序替换--如何自己实现一个bash解释器?
【linux进程控制(三)】进程程序替换--如何自己实现一个bash解释器?
|
20天前
|
Linux 编译器 Windows
【Linux】10. 进程地址空间
【Linux】10. 进程地址空间
19 4
|
1月前
|
存储 Linux 程序员
【Linux C/C++ 堆内存分布】深入理解Linux进程的堆空间管理
【Linux C/C++ 堆内存分布】深入理解Linux进程的堆空间管理
76 0
|
1月前
|
Shell Linux C语言
【Shell 命令集合 系统设置 内置命令】⭐⭐Linux 测量程序的执行时间和资源使用情况 time命令 使用指南
【Shell 命令集合 系统设置 内置命令】⭐⭐Linux 测量程序的执行时间和资源使用情况 time命令 使用指南
33 0
|
1月前
|
存储 Linux Shell
【Shell 命令集合 磁盘维护 】Linux 关闭Linux系统中的交换空间 swapoff命令使用教程
【Shell 命令集合 磁盘维护 】Linux 关闭Linux系统中的交换空间 swapoff命令使用教程
29 1