『C++成长记』C++入门——内联函数

简介: 『C++成长记』C++入门——内联函数



一、内联函数

    普通的函数在调用的时候会开辟函数栈帧,会产生一定量的消耗,在C语言中可以用宏函数来解决这个问题,但是宏存在以下缺陷:复杂、容易出错、可读性差、不能调试。为此,C++中引入了内联函数这种方法。

📒1.1内联函数的概念

    以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调 用建立栈帧的开销,内联函数提升程序运行的效率。

int Add(int x, int y)
{
    return x + y ;
}
int main()
{
    int ret = 0;
    ret = Add(3, 5);
    cout << ret << endl;
    return 0;
}

🎀内联函数

inline int Add(int x, int y)
{
    return x + y ;
}

内联函数在编译期间编译器会用函数体替换函数的调用。

注意:在默认的Debug模式下,内联函数是不会展开的。

查看方式:

  • 在release模式下,查看编译器生成的汇编代码中是否存在call Add。
  • 在debug模式下,需要对编译器进行设置,否则不会展开,需要进行设置,设置过程如下:

📒1.2内联函数的特征

  1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
  2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。
  3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址 了,链接就会找不到。

二、auto关键字

    随着程序越来越复杂,程序中用到的类型也越来越复杂,例如:

#include <vector>
#include <string>
int mian()
{
    vetcor<string> v;
    vetcor<string>::iterator it = v.begin();
    return 0;
}

   vetcor<string>::iterator是一个类型,但是该类型太长了,特别容易写错。在C语言中,我们可以通过 typedef 给类型取别名,比如:

typedef vetcor<string>::iterator Map;

    使用 typedef 给类型取别名确实可以简化代码,但使用 typedef 又会遇到新的问题。在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。但这点有时很难做到,因此C++11给auto赋予了新的含义。

auto it = v.degin();

📒2.1auto简介

    在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量, 但在C++11中:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。简单来说,auto会根据表达式自动推导类型

int main()
{
    int a = 0;
    auto b = a;
    auto& c = a;
    auto* d = &a;
    //typeid可用来查看变量类型
    cout << typeid(b).name() << endl;
    cout << typeid(c).name() << endl;
    cout << typeid(d).name() << endl;
    return 0;
}

注意:

    使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto 的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

int main()
{
    auto a;    //要初始化
    return 0;
}

📒2.2auto使用规则

🎀auto与指针和引用结合起来使用

  • 用auto声明指针类型时,用auto和auto*没有任何区别,
int main()
{
    int x = 10;
    auto a = &x;
    auto* b = &x;
    cout << typeid(a).name() << endl;
    cout << typeid(b).name() << endl;
    return 0;
}

  • 用auto声明引用类型时,则必须加&
int main()
{
    int x = 10;
    auto& a = x;
    cout << typeid(a).name() << endl;
    return 0;
}

🎀在同一行定义多个变量

   当在同一行声明多个变量的时候,这些变量必须是相同的类型,否则编译器会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。

int main()
{
    auto a = 10, b = 30;
    auto c = 15, d = 1.5;//该行编译失败,c和d的初始化类型不同
}

📒2.3auto无法使用的场景

🎀auto不能作为函数的参数

//错误,编译器无法对x的实际类型进行推导
void Text(auto x)
{}
int main()
{
    int a=5;
    Test(a);
    return 0;
}

🎀auto不能作返回值

auto Test(int x)
{}

🎀auto不能直接用来声明数组

void Text()
{
    auto arr[] = { 1, 2, 3 };//错误写法
    int arr[] = {1, 2, 3}//这才是正确写法
}

三、基于范围的for循环

📒3.1范围for的语法

    我们在以前使用 for 遍历一个数组,会用下面这种方法:

int main()
{
    int arr[] = { 1,2,3,4,5 };
    int size = sizeof(arr) / sizeof(arr[0]);
    for (int i = 0; i < size; ++i)
    {
        cout << arr[i] << " ";
    }
    cout << endl;
}

    对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范 围内用于迭代的变量,第二部分则表示被迭代的范围。

int main()
{
    int arr[] = { 1,2,3,4,5 };
    int size = sizeof(arr) / sizeof(arr[0]);
    for (auto e : arr)
    {
        cout << e << " ";
    }
    return 0;
}

   依次取数组arr中的每个数赋值给e,e也就是数组中每个数的拷贝,所以e的改变不会影响数组中数的改变,想要改变数组的值,要使用引用。

int main()
{
    int arr[] = { 1,2,3,4,5 };
    int size = sizeof(arr) / sizeof(arr[0]);
    for (auto e : arr)
    {
        e++;
        cout << e << " ";
    }
    cout << endl;
    for (auto e : arr)
    {
        cout << e << " ";
    }
    return 0;
}

📒3.2范围for的使用条件

  1. for循环迭代的范围必须是确定的
  2. 迭代的对象要实现++==的操作

    对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供 begin 和end的方法,begin和end就是for循环迭代的范围。

注意:以下代码就有问题,因为for的范围不确定

void Text(int arr[])//arr本质上只是一个地址,没有范围
{
    for (auto a : arr)
    {
        cout << a << endl;
    }
}

数组不能传参,数组传参传递的是数组首元素的地址

四、指针空值nullptr

    在C/C++编程习惯中,我们声明一个变量时最好给该变量一个合适的初始值,否则可能会出现 不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们都会把它置为空指针。

void Test()
{
    int* p1 = NULL;
    int* p2 = 0;
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

下面这段代码的结果是什么呢?

void f(int)
{
    cout<<"f(int)"<<endl;
}
void f(int*)
{
    cout<<"f(int*)"<<endl;
}
int main()
{
    f(0);
    f(NULL);
    f(nullptr);
    return 0;
}

   程序本意是想通过 f(NULL) 调用 f(int*) 函数,但是由于NULL被定义成0,因此与程序的初衷相悖。 在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

注意:

1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。

2. 在C++11中,sizeof(nullptr) sizeof((void*)0)所占的字节数相同。

3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

本次的内容到这里就结束啦。希望大家阅读完可以有所收获,同时也感谢各位读者三连支持。文章有问题可以在评论区留言,博主一定认真认真修改,以后写出更好的文章。你们的支持就是博主最大的动力。

相关文章
|
3月前
|
编译器 C++
C++入门12——详解多态1
C++入门12——详解多态1
59 2
C++入门12——详解多态1
|
3月前
|
C++
C++入门13——详解多态2
C++入门13——详解多态2
96 1
|
3月前
|
存储 安全 编译器
【C++打怪之路Lv1】-- 入门二级
【C++打怪之路Lv1】-- 入门二级
39 0
|
3月前
|
自然语言处理 编译器 C语言
【C++打怪之路Lv1】-- C++开篇(入门)
【C++打怪之路Lv1】-- C++开篇(入门)
42 0
|
3月前
|
分布式计算 Java 编译器
【C++入门(下)】—— 我与C++的不解之缘(二)
【C++入门(下)】—— 我与C++的不解之缘(二)
|
3月前
|
编译器 Linux C语言
【C++入门(上)】—— 我与C++的不解之缘(一)
【C++入门(上)】—— 我与C++的不解之缘(一)
|
3月前
|
编译器 C++
C++入门11——详解C++继承(菱形继承与虚拟继承)-2
C++入门11——详解C++继承(菱形继承与虚拟继承)-2
47 0
|
3月前
|
程序员 C++
C++入门11——详解C++继承(菱形继承与虚拟继承)-1
C++入门11——详解C++继承(菱形继承与虚拟继承)-1
55 0
|
3月前
|
存储 算法 C++
C++入门10——stack与queue的使用
C++入门10——stack与queue的使用
57 0
|
3月前
|
存储 C++ 容器
C++入门9——list的使用
C++入门9——list的使用
25 0