Flume【基础知识 01】简介 + 基本架构及核心概念 + 架构模式 + Agent内部原理 + 配置格式(一篇即可入门Flume)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 【2月更文挑战第18天】Flume【基础知识 01】简介 + 基本架构及核心概念 + 架构模式 + Agent内部原理 + 配置格式(一篇即可入门Flume)

1 简介

Apache Flume 是一个分布式,高可用的数据收集系统。它可以从不同的数据源收集数据,经过聚合后发送到存储系统中,通常用于日志数据的收集。Flume 分为 NG 和 OG (1.0 之前) 两个版本,NG 在 OG的基础上进行了完全的重构,是目前使用最为广泛的版本。
Flume 跟 Sqoop、Kettle 有类似的地方但是又有不同,随后会详细分析。

2 基本架构及核心概念

基本架构图【官网】:

在这里插入图片描述

来自尚硅谷的资料,侵删,【这个较为详尽】:
请添加图片描述

2.1 基本架构

这里我们可以类比Kafka进行理解,外部数据源【扮演Kafka的生产者】以特定格式向 Flume 发送 events (事件)【就像Kafka的message一样】,当 source 接收到 events 时,它将其存储到一个或多个 channel【是不是很像Kafka的副本】,channe 会一直保存 events 直到它被 sink 所消费。sink 的主要功能从 channel 中读取 events 【是不是很像Kafka的消费者】,并将其存入外部存储系统或转发到下一个 source,成功后再从 channel 中移除 events。【跟Kafka多么的像】:elephant:

2.2 核心概念

Agent: 是一个JVM进程,它以事件的形式将数据从源头送至目的,是Flume数据传输的基本单元。Agent主要有3个部分组成,Source、Channel、Sink。

Event: 它是 Flume NG 数据传输的基本单元。类似于 JMS 和消息系统中的消息。一个 Event 由标题和正文组成:前者是键/值映射,后者是任意字节数组。

Source: 数据收集组件,从外部数据源收集数据,并存储到 Channel 中。Source组件可以处理各种类型、各种格式的日志数据,包括 avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy。

Channel: 是源和接收器之间的管道,用于临时存储数据。Channel允许Source和Sink运作在不同的速率上。Channel是线程安全的,可以同时处理几个Source的写入操作和几个Sink的读取操作。可以是内存或持久化的文件系统:

Memory Channel : 使用内存中的队列,优点是速度快,但数据可能会丢失 (程序死亡、机器宕机或者重启都会导致数据丢失);

File Channel : 使用持久化的文件系统,将所有事件写到磁盘,因此在程序关闭或机器宕机的情况下不会丢失数据,优点是能保证数据不丢失,但是速度慢。

Sink: Sink不断地轮询Channel中的事件且批量地移除它们,并将这些事件批量写入到存储或索引系统、或者被发送到另一个Flume Agent。

Sink是完全事务性的。在从Channel批量删除数据之前,每个Sink用Channel启动一个事务。批量事件一旦成功写出到存储系统或下一个Flume Agent,Sink就利用Channel提交事务。事务一旦被提交,该Channel从自己的内部缓冲区删除事件。Sink组件目的地包括hdfs、logger、avro、thrift、ipc、file、null、HBase、solr、自定义。

2.3 组件种类

Flume 中的每一个组件都提供了丰富的类型,适用于不同场景:

  • Source 类型 :内置了几十种类型,如 Avro Source , Thrift Source , Kafka Source , JMS Source ;
  • Sink 类型 : HDFS Sink , Hive Sink , HBaseSinks , Avro Sink 等;
  • Channel 类型 : Memory Channel , JDBC Channel , Kafka Channel , File Channel 等。

对于 Flume 的使用,除非有特别的需求,否则通过组合内置的各种类型的 Source,Sink 和 Channel就能满足大多数的需求。在 Flume 官网 上对所有类型组件的配置参数均以表格的方式做了详尽的介绍【Flume的官网是真的很不错,清晰 :clap: 】,并附有配置样例;同时不同版本的参数可能略有所不同,所以使用时建议选取官网的《Flume 1.9.0 User Guide》作为主要参考资料。

3 架构模式

3.1 multi-agent flow

Flume 支持跨越多个 Agent 的数据传递,这要求前一个 Agent 的 Sink 和下一个 Agent 的 Source 都必须是 Avro 类型,Sink 指向 Source 所在主机名 (或 IP 地址) 和端口。
在这里插入图片描述

3.2 Consolidation

Consolidation(联合,统一;合并) 日志收集中常常存在大量的客户端(比如分布式 web 服务),Flume 支持使用多个 Agent 分别收集日志,然后通过一个或者多个 Agent 聚合后再存储到文件系统中。
在这里插入图片描述

3.3 Multiplexing the flow

Flume 支持从一个 Source 向多个 Channel,也就是向多个 Sink 传递事件,这个操作称之为 Fan Out (扇出)。默认情况下 Fan Out 是向所有的 Channel 复制 Event ,即所有 Channel 收到的数据都是相同的。同时 Flume 也支持在 Source 上自定义一个复用选择器 (multiplexing selector) 来实现自定义的路由规则。
在这里插入图片描述

3.4 负载均衡

在这里插入图片描述

4 Agent内部原理

【来自尚硅谷的资料 侵删】这里不详细说明了,大家理解理解:
请添加图片描述

5 配置格式

配置通常需要【定义】和【绑定】两个部分,放在哪个可以随自己的习惯:

  1. 定义 Agent 的 Sources,Channels,Sinks 及其具体参数【参数可以从官网查询】。基本格式如下:
    ```xml

    定义agentName的sources、channels、sinks

    .sources =
    .channels =
    .sinks =

定义sources的具体属性

.sources.. =

定义channels的具体属性

.channels.. =

.channels.. =

定义sinks的具体属性

.sinks.. =


2. 绑定 Sources 和 Sinks 的 Channels。需要注意的是一个Sources可以配置多个Channels,但一个 Sink只能配置一个Channel。【sources后的是channels,sinks后的是channel,一定要注意。】基本格式如下:
```xml
# 绑定sources的channels 
<agentName>.sources.<sourceName>.channels = <channelName1> <channelName2> ...

# 绑定sinks的channel
<agentName>.sinks.<sinkName>.channel = <channelName1>
目录
相关文章
|
7月前
|
资源调度 监控 调度
基于SCA的软件无线电系统的概念与架构
软件通信体系架构(SCA)是基于软件定义无线电(SDR)思想构建的开放式、标准化和模块化平台,旨在通过软件实现通信功能的灵活配置。SCA起源于美军为解决“信息烟囱”问题而推出的联合战术无线电系统(JTRS),其核心目标是提升多军种联合作战通信能力。 上海介方信息公司的OpenSCA操作环境严格遵循SCA4.1/SRTF标准,支持高集成、嵌入式等场景,适用于军用通信、雷达等领域。 SCA体系包括目标平台资源层(TRL)、环境抽象层(EAL)、SRTF操作环境(OE)及应用层(AL)。其中,SRTF操作环境包含操作系统、运行时环境(RTE)和核心框架(CF),提供波形管理、资源调度等功能。
|
3月前
|
存储 监控 算法
园区导航系统技术架构实现与原理解构
本文聚焦园区导航场景中室内外定位精度不足、车辆调度路径规划低效、数据孤岛难以支撑决策等技术痛点,从架构设计到技术原理,对该系统从定位到数据中台进行技术拆解。
110 0
园区导航系统技术架构实现与原理解构
|
4月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
2360 9
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
|
4月前
|
存储 消息中间件 canal
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
|
5月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
1823 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
6月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
1558 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
5月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
140 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
5月前
|
Java 开发者 Spring
Spring框架 - 深度揭秘Spring框架的基础架构与工作原理
所以,当你进入这个Spring的世界,看似一片混乱,但细看之下,你会发现这里有个牢固的结构支撑,一切皆有可能。不论你要建设的是一座宏大的城堡,还是个小巧的花园,只要你的工具箱里有Spring,你就能轻松搞定。
210 9
|
6月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
280 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理

热门文章

最新文章