C语言从入门到实战——数据在内存中的存储方式

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
应用实时监控服务-用户体验监控,每月100OCU免费额度
简介: 数据在内存中的存储方式是以二进制形式存储的。计算机中的内存由一系列存储单元组成,每个存储单元都有一个唯一的地址,用于标识它在内存中的位置。计算机可以通过这些地址来定位并访问内存中的数据。数据在内存中的存储方式取决于数据的类型。数值类型的数据(例如整数、浮点数等)以二进制形式存储,并根据类型的不同分配不同的存储空间。字符串和字符数据由ASCII码存储在内存中。数据结构(例如数组、结构体、链表等)的存储方式也取决于其类型和组织结构。总之,数据在内存中以二进制形式存储,并根据其类型和组织方式分配不同的存储空间。

数据在内存中的存储方式


前言

数据在内存中的存储方式是以二进制形式存储的。计算机中的内存由一系列存储单元组成,每个存储单元都有一个唯一的地址,用于标识它在内存中的位置。计算机可以通过这些地址来定位并访问内存中的数据。

数据在内存中的存储方式取决于数据的类型。数值类型的数据(例如整数、浮点数等)以二进制形式存储,并根据类型的不同分配不同的存储空间。字符串和字符数据由ASCII码存储在内存中。数据结构(例如数组、结构体、链表等)的存储方式也取决于其类型和组织结构。

总之,数据在内存中以二进制形式存储,并根据其类型和组织方式分配不同的存储空间。


1. 整数在内存中的存储

整数的2进制表示方法有三种,即原码、反码和补码

三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的一位是被当做符号位,剩余的都是数值位。

正整数的原、反、补码都相同

负整数的三种表示方法各不相同

原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码

为什么数据在内存中是按照补码存在的

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

你可以这样理解,为了简化电路,CPU里只存在加法器,使用补码,可以使加法器来计算减法,有人可能会问乘法呢?乘法只不过是加法多加几次而已。

2. 大小端字节序和字节序判断

当我们了解了整数在内存中存储后,我们调试看一个细节:

#include <stdio.h>
int main()
{
  int a = 0x11223344;
  return 0;
}

调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为什么呢?

2.1 什么是大小端

其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:

大端(存储)模式:是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。

小端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

上述概念需要记住,方便分辨大小端。

2.2 为什么有大小端

为什么会有大小端模式之分呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit位,但是在C语言中除了8bit的 char 之外,还有16bit的 short 型,32bit的 long 型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么

0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

2.3 练习

2.3.1 练习1

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)-百度笔试题

//代码1
#include <stdio.h>
int check_sys()
{
  int i = 1;
  return (*(char *)&i);
}
int main()
{
  int ret = check_sys();
  if(ret == 1)
  {
    printf("小端\n");
  }
  else
  {
    printf("大端\n");
  }
  return 0;
}
//代码2
int check_sys()
{
  union
  {
    int i;
    char c;
  }un;
  un.i = 1;
  return un.c;
}

代码1

代码2

2.3.2 练习2

#include <stdio.h>
int main()
{
  char a= -1;
  signed char b=-1;
  unsigned char c=-1;
  printf("a=%d,b=%d,c=%d",a,b,c);//无符号字符型没有符号位,
  return 0;
}

255 为什么等于 -127 呢? 是因为没有符号位的时候。

2.3.3 练习3

#include <stdio.h>
int main()
{
  char a = -128;
  printf("%u\n",a);
  return 0;
}

根据上面所示,这个也是同理,%u打印无符号整数,而-128表示的也就是最大值,而本题还有一个小点,char是字符型,%u打印无符号整数,要先发生整型提升,负数的整型提升提升的是符号位,然后就出现了如下的数字。

#include <stdio.h>
int main()
{
  char a = 128;
  printf("%u\n",a);
  return 0;
}

2.3.4 练习4

#include <stdio.h>
int main()
{
  char a[1000];
  int i;
  for(i=0; i<1000; i++)
  {
    a[i] = -1-i;
  }
  printf("%d",strlen(a));
  return 0;
}

字符类型 char 也可以设置 signed 和 unsigned
signed char c; // 范围为 -128 到 127
unsigned char c; // 范围为 0 到 255

可得上面代码是打印个数

2.3.5 练习5

#include <stdio.h>
unsigned char i = 0;
int main()
{
  for(i = 0;i<=255;i++)
  {
    printf("hello world\n");
  }
  return 0;
}

unsigned char i = 0;
存储的最大空间是255,255再加的话会变成0,所以出现死循环
#include <stdio.h>
int main()
{
  unsigned int i;
  for(i = 9; i >= 0; i--)
  {
    printf("%u\n",i);
  }
  return 0;
}

同理,本题也是出现死循环

2.3.6 练习6

#include <stdio.h>
int main()
{
  int a[4] = { 1, 2, 3, 4 };
  int *ptr1 = (int *)(&a + 1);
  int *ptr2 = (int *)((int)a + 1);
  printf("%x,%x", ptr1[-1], *ptr2);
  return 0;
}

3. 浮点数在内存中的存储

常见的浮点数:3.14159、1E10等,浮点数家族包括: float double long double 类型。

浮点数表示的范围: float.h 中定义

3.1 练习

#include <stdio.h>
int main()
{
  int n = 9;
  float *pFloat = (float *)&n;
  printf("n的值为:%d\n",n);
  printf("*pFloat的值为:%f\n",*pFloat);
  *pFloat = 9.0;
  printf("num的值为:%d\n",n);
  printf("*pFloat的值为:%f\n",*pFloat);
  return 0;
}

3.2 浮点数的存储

上面的代码中, num *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

V = (−1) S ∗ M ∗ 2E

  • (−1) S 表示符号位,当S=0,V为正数;当S=1,V为负数 (−1) S
  • M表示有效数字,M是大于等于1,小于2的
  • 2E表示指数位

举例来说:

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×22

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×22 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M

对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

float类型浮点数内存分配

double类型浮点数内存分配

3.2.1 浮点数存的过程

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面的说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂

首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0 ~ 2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,210的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001

3.2.2 浮点数取的过程

指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。

比如:0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2(-1),其阶码为-1+127(中间值)=126,表示为 01111110 ,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000 ,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1 ~ 1023)即为真实值,有效数字M不再加上第①位的1,而是还原为0.xxxxxx小数。这样做是为了表示±0,以及接近于0的很小的数字。

0 00000000 00100000000000000000000

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

0 11111111 00010000000000000000000

3.3 题目解析

下面,让我们回到一开始的练习

先看第1环节,为什么 9 还原成浮点数,就成了 0.0000009以整型的形式存储在内存中,得到如下二进制序列:

0000 0000 0000 0000 0000 0000 0000 1001

首先,将 9 的二进制序列按照浮点数的形式拆分,得到第一位符号位s=0,后面8位的指数E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

  V=(-1)0 * 0.00000000000000000001001∗2(-126)=1.001*2(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看第2环节,浮点数9.0,为什么整数打印是 1091567616 首先,浮点数9.0等于二进制的1001.0,即换算成科学计数法是:1.001 ∗ 23

所以:9.0 = (−1) ∗ 0 ∗ (1.001) ∗ 23

那么,第一位的符号位S=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010

所以,写成二进制形式,应该是S+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是1091567616 。


相关文章
|
2月前
|
Java 数据库连接 测试技术
SpringBoot入门 - 添加内存数据库H2
SpringBoot入门 - 添加内存数据库H2
67 3
SpringBoot入门 - 添加内存数据库H2
|
1月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
45 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
2月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
51 6
|
2月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
151 13
|
2月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
存储 C语言 计算机视觉
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。
|
1月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
62 10
|
1月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
50 9
|
1月前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
40 8