Apache Hudi + Flink作业运行指南

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Hudi + Flink作业运行指南

近日Apache Hudi社区合并了Flink引擎的基础实现(HUDI-1327),这意味着 Hudi 开始支持 Flink 引擎。有很多小伙伴在交流群里咨询 Hudi on Flink 的使用姿势,三言两语不好描述,不如实操演示一把,于是有了这篇文章。

当前 Flink 版本的Hudi还只支持读取 Kafka 数据,Sink到 COW(COPY_ON_WRITE) 类型的 Hudi 表中,其他功能还在继续完善中。

这里我们简要介绍下如何从 Kafka 读取数据写出到Hudi表。

1. 打包

由于还没有正式发布, 我们需要到Github下载源码自行打包。

git clone https://github.com/apache/hudi.git && cd hudimvn clean package -DskipTests

Windows 系统用户打包时会报如下错误:

[ERROR] Failed to execute goal org.codehaus.mojo:exec-maven-plugin:1.6.0:exec (Setup HUDI_WS) on project hudi-integ-test: Command execution failed. Cannot run program "\bin\bash" (in directory "D:\github\hudi\hudi-integ-test"): CreateProcess error=2, 系统找不到指定的文件。 -> [Help 1][ERROR][ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.[ERROR] Re-run Maven using the -X switch to enable full debug logging.[ERROR][ERROR] For more information about the errors and possible solutions, please read the following articles:[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoExecutionException[ERROR][ERROR] After correcting the problems, you can resume the build with the command[ERROR]   mvn <goals> -rf :hudi-integ-test

这是 hudi-integ-test 模块的一个bash脚本无法执行导致的错误,我们可以把它注释掉。

修改D:\github\hudi\pom.xml根pom文件

<modules>    <module>hudi-common</module>    <module>hudi-cli</module>    <module>hudi-client</module>    <module>hudi-hadoop-mr</module>    <module>hudi-spark</module>    <module>hudi-timeline-service</module>    <module>hudi-utilities</module>    <module>hudi-sync</module>    <module>packaging/hudi-hadoop-mr-bundle</module>    <module>packaging/hudi-hive-sync-bundle</module>    <module>packaging/hudi-spark-bundle</module>    <module>packaging/hudi-presto-bundle</module>    <module>packaging/hudi-utilities-bundle</module>    <module>packaging/hudi-timeline-server-bundle</module>    <module>docker/hoodie/hadoop</module><!--    <module>hudi-integ-test</module>--><!--    <module>packaging/hudi-integ-test-bundle</module>-->    <module>hudi-examples</module>    <module>hudi-flink</module>    <module>packaging/hudi-flink-bundle</module>  </modules>

再次执行 mvn clean package -DskipTests, 执行成功后,找到这个jar : D:\github\hudi\packaging\hudi-flink-bundle\target\hudi-flink-bundle_2.11-0.6.1-SNAPSHOT.jar (笔者Hudi源码在D:\github\ 路径下,大家根据自己实际路径找一下)

这个 hudi-flink-bundle_2.11-0.6.1-SNAPSHOT.jar 就是我们需要使用的flink客户端,类似于原版的 hudi-utilities-bundle_2.11-x.x.x.jar

2. 入参介绍

有几个必传的参数介绍下:

--kafka-topic :Kafka 主题--kafka-group-id :消费组--kafka-bootstrap-servers : Kafka brokers--target-base-path : Hudi 表基本路径--target-table :Hudi 表名--table-type :Hudi 表类型--props : 任务配置

其他参数可以参考 org.apache.hudi.HoodieFlinkStreamer.Config,里面每个参数都有介绍 。

3. 启动准备清单

1.Kafka 主题,消费组2.jar上传到服务器3.schema 文件4.Hudi任务配置文件

注意根据自己的配置把配置文件放到合适的地方,笔者的 hudi-conf.properties和schem.avsc文件均上传在HDFS。

-rw-r--r-- 1 user user      592 Nov 19 09:32 hudi-conf.properties-rw-r--r-- 1 user user 39086937 Nov 30 15:51 hudi-flink-bundle_2.11-0.6.1-SNAPSHOT.jar-rw-r--r-- 1 user user 1410 Nov 17 17:52 schema.avsc

hudi-conf.properties内容如下

hoodie.datasource.write.recordkey.field=uuidhoodie.datasource.write.partitionpath.field=tsbootstrap.servers=xxx:9092hoodie.deltastreamer.keygen.timebased.timestamp.type=EPOCHMILLISECONDShoodie.deltastreamer.keygen.timebased.output.dateformat=yyyy/MM/ddhoodie.datasource.write.keygenerator.class=org.apache.hudi.keygen.TimestampBasedAvroKeyGeneratorhoodie.embed.timeline.server=falsehoodie.deltastreamer.schemaprovider.source.schema.file=hdfs://olap/hudi/test/config/flink/schema.avschoodie.deltastreamer.schemaprovider.target.schema.file=hdfs://olap/hudi/test/config/flink/schema.avsc

schema.avsc内容如下

{  "type":"record",  "name":"stock_ticks",  "fields":[{     "name": "uuid",     "type": "string"  }, {     "name": "ts",     "type": "long"  }, {     "name": "symbol",     "type": "string"  },{     "name": "year",     "type": "int"  },{     "name": "month",     "type": "int"  },{     "name": "high",     "type": "double"  },{     "name": "low",     "type": "double"  },{     "name": "key",     "type": "string"  },{     "name": "close",     "type": "double"  }, {     "name": "open",     "type": "double"  }, {     "name": "day",     "type":"string"  }]}

4. 启动任务

/opt/flink-1.11.2/bin/flink run -c org.apache.hudi.HoodieFlinkStreamer -m yarn-cluster -d -yjm 1024 -ytm 1024 -p 4 -ys 3 -ynm hudi_on_flink_test hudi-flink-bundle_2.11-0.6.1-SNAPSHOT.jar --kafka-topic hudi_test_flink --kafka-group-id hudi_on_flink --kafka-bootstrap-servers xxx:9092 --table-type COPY_ON_WRITE --target-base-path hdfs://olap/hudi/test/data/hudi_on_flink --target-table hudi_on_flink  --props hdfs://olap/hudi/test/config/flink/hudi-conf.properties --checkpoint-interval 3000 --flink-checkpoint-path hdfs://olap/hudi/hudi_on_flink_cp

查看监控页面,任务已经跑起来了

现在在Hdfs路径下已经创建了一个空表(Hudi自动创建)

我们向 topic 中发数据(发了 900 条,本地写的 Producer 就不贴代码了)

我们查一下结果:

@Test  public void query() {    spark.read().format("hudi")        .load(basePath + "/*/*/*/*")        .createOrReplaceTempView("tmp_view");    spark.sql("select * from tmp_view limit 2").show();    spark.sql("select count(1) from tmp_view").show();  }
+-------------------+--------------------+--------------------+----------------------+--------------------+--------------------+-------------+--------------------+----+-----+-------------------+------------------+------+------------------+-------------------+---+|_hoodie_commit_time|_hoodie_commit_seqno|  _hoodie_record_key|_hoodie_partition_path|   _hoodie_file_name|                uuid|           ts|              symbol|year|month|               high|               low|   key|             close|               open|day|+-------------------+--------------------+--------------------+----------------------+--------------------+--------------------+-------------+--------------------+----+-----+-------------------+------------------+------+------------------+-------------------+---+|     20201130162542| 20201130162542_0_20|01e11b9c-012a-461...|            2020/10/29|c8f3a30a-0523-4c8...|01e11b9c-012a-461...|1603947341061|12a-4614-89c3-f62...| 120|   10|0.45757580489415417|0.0816472025173598|01e11b|0.5795817262998396|0.15864898816336837|  1||     20201130162542| 20201130162542_0_21|22e96b41-344a-4be...|            2020/10/29|c8f3a30a-0523-4c8...|22e96b41-344a-4be...|1603921161580|44a-4be2-8454-832...| 120|   10| 0.6200960168557579| 0.946080636091312|22e96b|0.6138608980526853| 0.5445994550724997|  1|+-------------------+--------------------+--------------------+----------------------+--------------------+--------------------+-------------+--------------------+----+-----+-------------------+------------------+------+------------------+-------------------+---+
+--------+|count(1)|+--------+|     900|+--------+

5. 总结

本文简要介绍了使用 Flink 引擎将数据写出到Hudi表的过程。主要包括自主打可执行jar、启动参数介绍、Schema配置、Hudi任务参数配置等步骤

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2天前
|
Oracle Java 关系型数据库
实时计算 Flink版操作报错合集之本地打成jar包,运行报错,idea运行不报错,是什么导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
23 6
|
4天前
|
关系型数据库 MySQL OLAP
实时计算 Flink版产品使用合集之可以支持 MySQL 数据源的增量同步到 Hudi 吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
28 4
|
2天前
|
Oracle Java 关系型数据库
实时计算 Flink版操作报错合集之本地打成jar包,运行报错,idea运行不报错,是什么导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
12 0
|
2天前
|
SQL 存储 关系型数据库
实时计算 Flink版操作报错合集之向Hudi写入数据时遇到错误如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
16 0
|
2天前
|
消息中间件 Java Kafka
实时计算 Flink版操作报错合集之在运行过程中遇到"Could not upload job files"的问题如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
11 0
|
3天前
|
消息中间件 Oracle 关系型数据库
实时计算 Flink版操作报错合集之一直无法正常运行,并且网络状况良好,是什么原因导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
22 8
|
3天前
|
SQL Java 关系型数据库
实时计算 Flink版操作报错合集之通过flink sql形式同步数据到hudi中,本地启动mian方法报错如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
22 8
|
3天前
|
SQL 关系型数据库 数据库
实时计算 Flink版操作报错合集之运行个几个小时就开始报错,是什么原因导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
16 5
|
3天前
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错合集之连接器换成2.4.2之后,mysql作业一直报错如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
16 3
|
4天前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之在进行数据同步作业时,有什么方法可以用于检查源端和目标端的数据一致性
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
12 0

推荐镜像

更多