超详细步骤!整合Apache Hudi + Flink + CDH

简介: 超详细步骤!整合Apache Hudi + Flink + CDH

1. 环境准备

各组件版本如下

Flink 1.13.1

Hudi 0.10

Hive 2.1.1

CDH 6.3.0

Kafka 2.2.1

1.1 Hudi 代码下载编译

下载代码至本地

steven@wangyuxiangdeMacBook-Pro  ~  git clone  https://github.com/apache/hudi.gitCloning into 'hudi'...remote: Enumerating objects: 122696, done.remote: Counting objects: 100% (5537/5537), done.remote: Compressing objects: 100% (674/674), done.remote: Total 122696 (delta 4071), reused 4988 (delta 3811), pack-reused 117159Receiving objects: 100% (122696/122696), 75.85 MiB | 5.32 MiB/s, done.Resolving deltas: 100% (61608/61608), done.

使用Idea打开Hudi项目,更改packging/hudi-flink-bundle的pom.xml文件,修改flink-bundle-shade-hive2 profile下的hive-version为cdh6.3.0的版本

使用命令进行编译

mvn clean install -DskipTests -DskipITs -Dcheckstyle.skip=true -Drat.skip=true -Dhadoop.version=3.0.0  -Pflink-bundle-shade-hive2

注意:

1.因为cdh6.3.0使用的是hadoop3.0.0,所以要指定hadoop的版本2.使用hive2.1.1的版本,也要指定hive的版本,不然使用sync to hive的时候会报类的冲突问题

在packaging下面各个组件中编译成功的jar包

将hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar放到flink1.13.1的lib目录下可以开启Hudi数据湖之旅了。

1.2 配置Flink On Yarn模式

flink-conf.yaml的配置文件如下

execution.target: yarn-per-job#execution.target: localexecution.checkpointing.externalized-checkpoint-retention: RETAIN_ON_CANCELLATION#进行checkpointing的间隔时间(单位:毫秒)execution.checkpointing.interval: 30000 execution.checkpointing.mode: EXACTLY_ONCE #execution.checkpointing.prefer-checkpoint-for-recovery: trueclassloader.check-leaked-classloader: false jobmanager.rpc.address: dbos-bigdata-test005 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123akka.framesize: 10485760b jobmanager.memory.process.size: 1024m taskmanager.heap.size: 1024m taskmanager.numberOfTaskSlots: 1 # The parallelism used for programs that did not specify and other parallelism. parallelism.default: 1 env.java.home key: /usr/java/jdk1.8.0_181-cloudera  high-availability: zookeeper high-availability.storageDir: hdfs:///flink/ha/ high-availability.zookeeper.quorum: dbos-bigdata-test003:2181,dbos-bigdata-test004:2181,dbos-bigdata-test005:2181 state.backend: filesystem # Directory for checkpoints filesystem, when using any of the default bundled# state backends.#state.checkpoints.dir: hdfs://bigdata/flink-checkpoints jobmanager.execution.failover-strategy: region env.log.dir: /tmp/flinkhigh-availability.zookeeper.path.root: /flink

配置Flink环境变量

vim /etc/profile以下是环境变量,根据自己的版本进行更改#set default jdk1.8 envexport JAVA_HOME=/usr/java/jdk1.8.0_181-clouderaexport JRE_HOME=/usr/java/jdk1.8.0_181-cloudera/jreexport CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/libexport HADOOP_CONF_DIR=/etc/hadoop/confexport HADOOP_CLASSPATH=`hadoop classpath`export HBASE_CONF_DIR=/etc/hbase/confexport FLINK_HOME=/opt/flinkexport HIVE_HOME=/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/lib/hiveexport HIVE_CONF_DIR=/etc/hive/confexport M2_HOME=/usr/local/maven/apache-maven-3.5.4export CANAL_ADMIN_HOME=/data/canal/adminexport CANAL_SERVER_HOME=/data/canal/deployerexport PATH=${JAVA_HOME}/bin:${JRE_HOME}/bin:${FLINK_HOME}/bin:${M2_HOME}/bin:${HIVE_HOME}/bin:${CANAL_SERVER_HOME}/bin:${CANAL_ADMIN_HOME}/bin:$PATH

检查Flink是否正常

Hudi编译好的jar包和kafka的jar包放到Flink的lib目录下

以下三个包也要放到Flink的lib下,否则同步数据到Hive时会报错

1.3 部署同步到Hive的环境

将hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar包放入到以下路径

[flink@dbos-bigdata-test005 jars]$ pwd/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/jars

进入到hive lib目录,每一台hive节点都要放置jar包

[flink@dbos-bigdata-test005 lib]$ pwd/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/lib/hive/lib//建立软链接[flink@dbos-bigdata-test005 lib]$ ln -ls ../../../jars/hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar  hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar

1.4. 安装 YARN MapReduce 框架 JAR

进入平台操作,安装YARN MapReduce框架JAR

设置Hive辅助JAR目录

因为后面考虑到hudi的数据存到oss,所以要放这几个包进来(关于oss的配置详细可参考oss配置文档)

重启Hive,使配置生效

2. 测试demo

创建kafka数据

//创建topickafka-topics --zookeeper  dbos-bigdata-test003:2181,dbos-bigdata-test004:2181,dbos-bigdata-test005:2181/kafka --create --partitions 4 --replication-factor 3 --topic test  //删除topickafka-topics --zookeeper  dbos-bigdata-test003:2181,dbos-bigdata-test004:2181,dbos-bigdata-test005:2181/kafka --delete --topic test//生产数据kafka-console-producer --broker-list dbos-bigdata-test003:9092,dbos-bigdata-test004:9092,dbos-bigdata-test005:9092 --topic test//直接复制数据{"tinyint0": 6, "smallint1": 223, "int2": 42999, "bigint3": 429450, "float4": 95.47324181659323, "double5": 340.5755392968011,"decimal6": 111.1111, "boolean7": true,  "char8": "dddddd", "varchar9": "buy0", "string10": "buy1", "timestamp11": "2021-09-13 03:08:50.810"}

启动flink-sql

[flink@dbos-bigdata-test005 hive]$ cd  /opt/flink[flink@dbos-bigdata-test005 flink]$ lltotal 496drwxrwxr-x  2 flink flink   4096 May 25 20:36 bindrwxrwxr-x  2 flink flink   4096 Nov  4 17:22 confdrwxrwxr-x  7 flink flink   4096 May 25 20:36 examplesdrwxrwxr-x  2 flink flink   4096 Nov  4 13:58 lib-rw-r--r--  1 flink flink  11357 Oct 29  2019 LICENSEdrwxrwxr-x  2 flink flink   4096 May 25 20:37 licensesdrwxr-xr-x  2 flink flink   4096 Jan 30  2021 log-rw-rw-r--  1 flink flink 455180 May 25 20:37 NOTICEdrwxrwxr-x  3 flink flink   4096 May 25 20:36 optdrwxrwxr-x 10 flink flink   4096 May 25 20:36 plugins-rw-r--r--  1 flink flink   1309 Jan 30  2021 README.txt[flink@dbos-bigdata-test005 flink]$ ./bin/sql-client.sh

执行Hudi的Demo语句

Hudi 表分为 COW 和 MOR两种类型COW 表适用于离线批量更新场景,对于更新数据,会先读取旧的 base file,然后合并更新数据,生成新的 base file。MOR 表适用于实时高频更新场景,更新数据会直接写入 log file 中,读时再进行合并。为了减少读放大的问题,会定期合并 log file 到 base file 中。

//创建source表CREATE TABLE k (   tinyint0 TINYINT  ,smallint1 SMALLINT  ,int2 INT  ,bigint3 BIGINT  ,float4 FLOAT  ,double5 DOUBLE    ,decimal6 DECIMAL(38,8)  ,boolean7 BOOLEAN  ,char8 STRING  ,varchar9 STRING  ,string10 STRING  ,timestamp11 STRING) WITH (    'connector' = 'kafka',  -- 使用 kafka connector    'topic' = 'test',  -- kafka topic名称    'scan.startup.mode' = 'earliest-offset',  -- 从起始 offset 开始读取    'properties.bootstrap.servers' = 'dbos-bigdata-test003:9092,dbos-bigdata-test005:9092,dbos-bigdata-test005:9092',  -- kafka broker 地址    'properties.group.id' = 'testgroup1',     'value.format' = 'json',    'value.json.fail-on-missing-field' = 'true',    'value.fields-include' = 'ALL');

// 创建Hudi(cow)sink表CREATE TABLE hdm(   tinyint0 TINYINT  ,smallint1 SMALLINT  ,int2 INT  ,bigint3 BIGINT  ,float4 FLOAT  ,double5 DOUBLE    ,decimal6 DECIMAL(12,3)  ,boolean7 BOOLEAN  ,char8 CHAR(64)  ,varchar9 VARCHAR(64)  ,string10 STRING  ,timestamp11 TIMESTAMP(3) )PARTITIONED BY (tinyint0)  WITH (     'connector' = 'hudi'   , 'path' = 'hdfs://bigdata/hudi/hdm'   , 'hoodie.datasource.write.recordkey.field' = 'char8'  -- 主键   , 'write.precombine.field' = 'timestamp11'             -- 相同的键值时,取此字段最大值,默认ts字段   , 'write.tasks' = '1'   , 'compaction.tasks' = '1'   , 'write.rate.limit' = '2000'                          -- 限制每秒多少条   , 'compaction.async.enabled' = 'true'                  -- 在线压缩   , 'compaction.trigger.strategy' = 'num_commits'        -- 按次数压缩   , 'compaction.delta_commits' = '5'                     -- 默认为5   , 'hive_sync.enable' = 'true'                          -- 启用hive同步   , 'hive_sync.mode' = 'hms'                             -- 启用hive hms同步,默认jdbc   , 'hive_sync.metastore.uris' = 'thrift://dbos-bigdata-test002:9083'    -- required, metastore的端口   , 'hive_sync.jdbc_url' = 'jdbc:hive2://dbos-bigdata-test002:10000'     -- required, hiveServer地址   , 'hive_sync.table' = 'hdm'                            -- required, hive 新建的表名   , 'hive_sync.db' = 'hudi'                              -- required, hive 新建的数据库名   , 'hive_sync.username' = 'hive'                        -- required, HMS 用户名   , 'hive_sync.password' = ''                            -- required, HMS 密码   , 'hive_sync.skip_ro_suffix' = 'true'                  -- 去除ro后缀 );// 创建Hudi(mor)sink表CREATE TABLE hdm(   tinyint0 TINYINT  ,smallint1 SMALLINT  ,int2 INT  ,bigint3 BIGINT  ,float4 FLOAT  ,double5 DOUBLE    ,decimal6 DECIMAL(12,3)  ,boolean7 BOOLEAN  ,char8 CHAR(64)  ,varchar9 VARCHAR(64)  ,string10 STRING  ,timestamp11 TIMESTAMP(3) )PARTITIONED BY (tinyint0)  WITH (     'connector' = 'hudi'   , 'path' = 'hdfs://bigdata/hudi/hdm'   , 'hoodie.datasource.write.recordkey.field' = 'char8'  -- 主键   , 'write.precombine.field' = 'timestamp11'             -- 相同的键值时,取此字段最大值,默认ts字段   , 'write.tasks' = '1'   , 'compaction.tasks' = '1'   , 'write.rate.limit' = '2000'                          -- 限制每秒多少条   , 'table.type' = 'MERGE_ON_READ'                       -- 默认COPY_ON_WRITE   , 'compaction.async.enabled' = 'true'                  -- 在线压缩   , 'compaction.trigger.strategy' = 'num_commits'        -- 按次数压缩   , 'compaction.delta_commits' = '5'                     -- 默认为5   , 'hive_sync.enable' = 'true'                          -- 启用hive同步   , 'hive_sync.mode' = 'hms'                             -- 启用hive hms同步,默认jdbc   , 'hive_sync.metastore.uris' = 'thrift://dbos-bigdata-test002:9083'    -- required, metastore的端口   , 'hive_sync.jdbc_url' = 'jdbc:hive2://dbos-bigdata-test002:10000'     -- required, hiveServer地址   , 'hive_sync.table' = 'hdm'                            -- required, hive 新建的表名   , 'hive_sync.db' = 'hudi'                              -- required, hive 新建的数据库名   , 'hive_sync.username' = 'hive'                        -- required, HMS 用户名   , 'hive_sync.password' = ''                            -- required, HMS 密码   , 'hive_sync.skip_ro_suffix' = 'true'                  -- 去除ro后缀 );

// 插入source数据 insert into hdm select         cast(tinyint0 as TINYINT)    , cast(smallint1 as SMALLINT)    , cast(int2 as INT)    , cast(bigint3 as BIGINT)    , cast(float4 as FLOAT)    , cast(double5 as DOUBLE)    , cast(decimal6 as DECIMAL(38,18))    , cast(boolean7 as BOOLEAN)    , cast(char8 as CHAR(64))    , cast(varchar9 as VARCHAR(64))    , cast(string10 as STRING)    , cast(timestamp11 as TIMESTAMP(3))  from  k;

以上证明提交成功了,去yarn上查看作业状态

kafka正常消费了。

多几次往kafka里面造数据

注意:要以char8更新,因为这个是primary key

查看Hudi里面是否生成parquet文件

在hue上查看Hive中是否有数据同步过来,可以看到数据已经从Hudi中同步到Hive了。

3. FAQ

2021-11-04 16:17:29,687 ERROR org.apache.flink.runtime.entrypoint.ClusterEntrypoint        [] - Could not start cluster entrypoint YarnJobClusterEntrypoint.org.apache.flink.runtime.entrypoint.ClusterEntrypointException: Failed to initialize the cluster entrypoint YarnJobClusterEntrypoint.  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.startCluster(ClusterEntrypoint.java:212) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.runClusterEntrypoint(ClusterEntrypoint.java:600) [flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.yarn.entrypoint.YarnJobClusterEntrypoint.main(YarnJobClusterEntrypoint.java:99) [flink-dist_2.11-1.13.1.jar:1.13.1] Caused by: org.apache.flink.util.FlinkException: Could not create the DispatcherResourceManagerComponent.  at org.apache.flink.runtime.entrypoint.component.DefaultDispatcherResourceManagerComponentFactory.create(DefaultDispatcherResourceManagerComponentFactory.java:275) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.runCluster(ClusterEntrypoint.java:250) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.lambda$startCluster$1(ClusterEntrypoint.java:189) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_181]  at javax.security.auth.Subject.doAs(Subject.java:422) ~[?:1.8.0_181]  at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) ~[hadoop-common-3.0.0-cdh6.3.0.jar:?]  at org.apache.flink.runtime.security.contexts.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.startCluster(ClusterEntrypoint.java:186) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  ... 2 more Caused by: java.net.BindException: Could not start rest endpoint on any port in port range 40631  at org.apache.flink.runtime.rest.RestServerEndpoint.start(RestServerEndpoint.java:234) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.component.DefaultDispatcherResourceManagerComponentFactory.create(DefaultDispatcherResourceManagerComponentFactory.java:172) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.runCluster(ClusterEntrypoint.java:250) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.lambda$startCluster$1(ClusterEntrypoint.java:189) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at java.security.AccessController.doPrivileged(Native Method) ~[?:1.8.0_181]  at javax.security.auth.Subject.doAs(Subject.java:422) ~[?:1.8.0_181]  at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875) ~[hadoop-common-3.0.0-cdh6.3.0.jar:?]  at org.apache.flink.runtime.security.contexts.HadoopSecurityContext.runSecured(HadoopSecurityContext.java:41) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  at org.apache.flink.runtime.entrypoint.ClusterEntrypoint.startCluster(ClusterEntrypoint.java:186) ~[flink-dist_2.11-1.13.1.jar:1.13.1]  ... 2 more

解决方案:

需要把以下三个jar包放到flink的lib目录下即可

在线压缩策略没起之前占用内存资源,推荐离线压缩,但离线压缩需手动根据压缩策略才可触发

cow写少读多的场景 mor 相反

MOR表压缩在线压缩按照配置压缩,如压缩失败,会有重试压缩操作,重试压缩操作延迟一小时后重试

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
788 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
存储 数据管理 物联网
425 0
存储 SQL 分布式计算
239 0
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1910 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
6月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
585 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
6月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
699 6
|
SQL 架构师 API
《Apache Flink 知其然,知其所以然》系列视频课程
# 课程简介 目前在我的公众号新推出了《Apache Flink 知其然,知其所以然》的系列视频课程。在内容上会先对Flink整体架构和所适用的场景做一个基础介绍,让你对Flink有一个整体的认识!然后对核心概念进行详细介绍,让你深入了解流计算中一些核心术语的含义,然后对Flink 各个层面的API,如 SQL/Table&DataStreamAPI/PythonAPI 进行详细的介绍,以及
1614 0
《Apache Flink 知其然,知其所以然》系列视频课程
|
6月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
711 0
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
788 9
Apache Flink:从实时数据分析到实时AI

推荐镜像

更多