【开源视频联动物联网平台】视频AI智能分析部署方式

简介: 【开源视频联动物联网平台】视频AI智能分析部署方式

利用视频监控的AI智能分析技术,可以让视频监控发挥更大的作用,成为管理者的重要决策工具。近年来,基于视频监控的AI分析算法取得了巨大的发展,并在各种智慧化项目中得到了广泛应用,为客户提供更智能化的解决方案。


然而,AI智能分析算法的部署方式多种多样,给用户和集成商带来了一定的困扰。介绍目前主流的几种AI算法部署方式,以便在项目实施过程中充分评估并选择最适合项目环境的AI智能分析算法,从而让智能化项目快速落地,为用户提供更高效的服务。


目前,AI智能分析算法主要有三种部署方式:本地计算、边缘计算和云计算。


  • 本地计算是指将AI算法直接部署在摄像头中。这种部署方式具有高效、实时性好的优点,但受限于摄像头硬件的性能和算法的复杂性。因此,本地计算适用于对实时性要求较高且算法较为简单的场景。
  • 边缘计算是指将AI算法部署在用户局域网环境中的计算设备上。这种部署方式可以减轻网络负担,提高数据处理速度,但需要一定的硬件支持和维护成本。边缘计算适用于对数据处理速度和网络带宽要求较高的场景。
  • 云计算是指将AI算法部署在云端服务器上,通过互联网进行远程访问和管理。这种部署方式可以节省硬件成本和维护成本,但需要考虑网络延迟和安全性问题。云计算适用于对数据安全性和处理能力要求较高且需要远程访问的场景。


在项目实施过程中,需要根据项目需求和实际情况选择最适合的AI智能分析算法部署方式。通过充分评估和比较各种部署方式的优缺点,选择最合适的方案,才能让智能化项目快速落地并为用户提供更高效的服务。


AI摄像头本地计算


a30d69594b7cc08229c74d50e5cd9d0c_578a283d6d21dc065ccdaaa0766abdb3.png


众所周知,要进行AI智能分析,需要强大的计算能力来实时分析大量数据,同时还需要对视频流进行实时采集。如果对所有监控视频进行全面的AI智能分析,将会消耗大量的计算资源和带宽,并且在真实的项目环境中,并不是所有地方都需要进行AI智能分析,例如火灾监测,只需在有可能发生火灾的地方部署即可。因此,采用本地部署AI摄像头的方式更为经济实用,根据项目特点配置适当数量的摄像头,并为摄像头加载AI算法即可。


这种部署方式不仅经济划算,而且可以根据实际需要灵活配置,使得项目成本更容易计算。同时,许多算法还可以通过互联网进行升级,使得系统保持更新和优化。此外,大多数AI摄像头支持GB28181、RTSP等协议,可以与视频监控平台进行对接整合。


视频监控平台可以与AI摄像头进行联动,以多种方式呈现告警信息,例如智慧平台输出告警信号、视频弹屏联动、视频电话呼叫等操作。由于AI摄像头对系统的带宽和计算能力要求不高,因此实施起来更加便捷。


边缘盒子计算



当涉及到智慧类项目,如智慧社区、智慧连锁和智慧园区等,需要使用多种算法并充分利用现有的视频监控摄像头资源时,边缘盒子计算是一个值得考虑的方案。通过将AI视频分析算法部署在边缘盒子中,实时从现有的视频监控摄像头中拉取视频流进行分析,从而实现高效的数据处理。


然而,这种部署方式对边缘盒子的计算能力要求较高。由于AI视频分析需要对视频进行解码和分析,因此需要强大的GPU能力来支持。此外,考虑到算法的成本,整体部署成本较高,并且一个边缘盒子通常只能处理一定数量的视频接入。市面上大多数产品可以支持8-16个摄像头的接入分析。


在部署边缘盒子时,除了计算资源问题,还需要考虑视频监控摄像头的部署环境的带宽问题。此外,目前视频监控具有多种用途,可能有多个系统需要对视频监控摄像头进行拉流。因此,在选择AI边缘盒子时,需要考虑摄像头的压力问题。一些项目由于考虑不周,导致在项目上线后遇到带宽拥挤、摄像头过载以及监控系统卡顿等问题,甚至导致AI边缘盒子计算能力过载而死机。


为了避免这些问题,一些大型项目选择部署专门的视频接入网关来对接视频监控系统。视频监控网关将输出的视频流提供给边缘盒子进行智能分析,同时为其他融合系统提供视频流,如录像、大屏、智慧页面以及融合通信系统等。通过保持视频监控系统始终处于最低的拉流工作状态,确保监控系统的安全稳定运行。


云端计算分析


云端计算是一种将视频流传输到云服务器,利用云端的强大计算能力和存储资源进行AI识别和分析的方式。在云端,我们通常拥有更强大的计算能力和存储资源,可以运行更复杂的AI模型。然而,视频流从摄像头传输到云服务器需要足够的网络带宽,同时可能会产生一定的延迟。但云端计算的优势在于可以集中管理和分析多个摄像头的数据,同时可以轻松进行模型的更新和升级。


这种模式在大型项目或具有特殊意义的项目中具有很高的应用价值。但同时,我们也必须考虑到摄像头的上行带宽问题。如果带宽不足,可能会导致系统无法达到理想的运行状态,甚至可能因带宽问题产生大量的费用。


当然,对于一些大型项目,采用私有云部署也是一个不错的选择。通过利用大型集团企业的私有云平台来部署计算资源,我们可以确保集团内部的视频带宽资源得到充分保障。


目前,视频监控的AI分析算法主要采用以上三种部署方式,广泛应用于各种智慧类业务平台。对于从事智慧业务平台的软件开发和集成商来说,他们在推广和应标这类项目时,必须充分考虑项目的实际情况,选择最适合的AI算法部署方式。

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 供应链
AI智能分析
AI智能分析运用人工智能技术对数据进行深度挖掘和模式识别,助力商业智能、法律分析、医疗健康、股票市场、产品设计和技术研发等领域。通过机器学习和深度学习,AI能优化商业策略、提升诊断精度、辅助投资决策,并解决技术难题,为各行各业提供精准洞察和决策支持。
31 1
|
2天前
|
传感器 数据采集 安全
物联网的五层架构分析
物联网五层架构,包括感知层、网络层、数据层、应用层和业务层,扮演着关键的角色。
11 2
|
4天前
|
安全 搜索推荐 物联网
构建未来:基于Android的智能物联网家居系统
【5月更文挑战第15天】 在快速发展的数字化时代,智能物联网(IoT)技术与移动操作系统的结合正在塑造未来家居的生活方式。特别是Android平台,以其开放性、灵活性和广泛的用户基础,成为智能家居创新的理想选择。本文将探讨如何利用Android系统构建一个高效、安全且易于扩展的智能家居控制系统,涵盖系统设计、关键技术实现以及可能面临的挑战。通过分析具体案例,我们旨在为开发者和企业提供一套可行的解决方案蓝图,以促进智能家居领域的进一步发展。
|
5天前
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI】生成式AI,对话式AI,LLM,SLM 差异分析
【5月更文挑战第6天】生成式AI,对话式AI,LLM,SLM 学习
49 1
|
5天前
|
机器学习/深度学习 人工智能 算法
深入分析自动化测试中AI驱动的测试用例生成
【5月更文挑战第4天】随着人工智能(AI)技术的飞速发展,其在软件测试领域的应用也日益广泛。特别是在自动化测试过程中,AI技术能够显著提高测试用例的生成效率和质量。本文将探讨AI在自动化测试用例生成中的应用原理、优势以及面临的挑战,并展示通过AI技术优化测试流程的实际案例。
60 8
|
5天前
|
人工智能 自然语言处理 算法
分享几个.NET开源的AI和LLM相关项目框架
分享几个.NET开源的AI和LLM相关项目框架
|
5天前
|
传感器 物联网 大数据
物联网(IoT)技术与应用:塑造未来的智能化生活
【5月更文挑战第1天】物联网(IoT)技术整合传感器、嵌入式系统、云计算与大数据,连接智能设备,重塑生活与工作方式。应用涵盖智能家居、工业自动化、农业、智能城市及医疗健康,提升效率与便利性。然而,数据安全、设备兼容性及网络基础设施仍是挑战。随着5G和AI进步,IoT将在更多领域发挥潜力,驱动社会智能化转型,需关注技术挑战并加强创新。
|
5天前
|
机器学习/深度学习 人工智能 算法
深入分析自动化测试中AI驱动的测试用例生成技术
【4月更文挑战第29天】随着人工智能技术的不断发展,其在软件测试领域的应用也越来越广泛。本文主要探讨了AI驱动的测试用例生成技术在自动化测试中的应用,以及其对提高测试效率和质量的影响。通过对现有技术的深入分析和实例演示,我们展示了AI如何通过学习和理解软件行为来自动生成有效的测试用例,从而减少人工编写测试用例的工作量,提高测试覆盖率,降低错误检测的成本。
|
5天前
|
网络协议 物联网 Java
Go与Java:在物联网领域的适用性分析
本文对比分析了Go和Java在物联网领域的适用性。Go语言因其轻量级、高效和并发特性,适合资源受限的物联网设备,特别是处理并发连接和数据流。Java则凭借跨平台性、丰富的生态系统和企业级应用能力,适用于大型物联网系统和复杂业务场景。两者在物联网领域各有优势,开发者可根据项目需求选择合适的语言。

热门文章

最新文章