计算机网络:网络层上(数据平面)

简介: 计算机网络:网络层上(数据平面)



前言

网络层分两部分讲解,本篇文章讲解数据平面的内容:路由器组成、IP协议(IPV4、IPV6)、通用转发和SDN。


一、概述

网络层服务:

  • 在发送主机和接收主机对之间传送(segment)
  • 在发送端将段封装到数据报中
  • 在接收端,将段上交给传输层实体
  • 网络层协议存在于每一个主机和路由器
  • 路由器检查每一个经过它的IP数据报的头部

网络层功能:

  • 转发(数据平面):将分组从路由器的输入接口转发到合适的输出接口
  • 路由(控制平面):使用路由算法来决定分组从发送主机到目标接收主机的路径
  • 路由选择算法
  • 路由选择协议
  • 旅行的类比:
  • 转发:通过单个路口的过程
  • 路由:从源到目的的路由路径规划过程

数据平面

  • 本地,每个路由器功能
  • 决定从路由器输入端口到达的分组如何转发到输出端口
  • 转发功能:
  • 传统方式:
  • 基于目标地址 + 转发表
  • SDN方式:
  • 基于多个字段 + 交流

控制平面

  • 网络范围内的逻辑
  • 决定数据报如何在路由器之间路由,决定数据报如何在路由器之间路由,决定数据报从源到目标主机之间的端到端路径
  • 2个控制平面方法:
  • 传统的路由算法:
  • 在路由器中被实现
  • 在每一个路由器中的单独路由器算法元件,在控制平面进行交互
  • software-defined networking(SDN):
  • 在远程的服务器中实现
  • 一个不同的(通常是远程的)控制器与本地控制代理(CAs)交互

1.网络服务模型

Q:从发送方主机到接收方主机传输数据报的“通道”,网络提供什么样的服务模型?

  • 对于单个数据报的服务:
  • 可靠传送
  • 延迟保证,如:少于40ms的延迟
  • 这就是提供的服务模型
  • 对于数据报流的服务:
  • 保序数据报传送
  • 保证流的最小带宽
  • 分组之间的延迟差
  • 这就是提供的服务模型

2.连接建立

  • 在某些网络架构中是第三个重要的功能
  • ATM, frame relay,×.25
  • 在分组传输之前,在两个主机之间,在通过一些路由器所构成的路径上建立一个网络层连接
  • 涉及到路由器
  • 网络层和传输层连接服务区别:
  • 网络层:在2个主机之间,涉及到路径上的一些路由器
  • 传输层:在2个进程之间,很可能只体现在端系统上(TCP连接)

二、路由器组成

路由器结构概况

高层面(非常简化的)通用路由器体系架构

  • 路由:运行路由选择算法/协议(RIP, OSPF, BGP)生成路由表
  • 转发:从输入到输出链路交换数据报-根据路由表进行分组的转发

输入端口的功能

基于目标的转发:

  • 最长前缀匹配
  • 当给定目标地址查找转发表时,采用最长地址前缀匹配的自标地址表项
  • 最长前缀匹配:在路由器中经常采用TCAMs(ternary content addressable memories)硬件来完成
  • 内容可寻址:将地址交给TCAM,它可以在一个时钟周期内检索出地址,不管表空间有多大
  • Cisco Catalyst系列路由器:在TCAM中可以存储多达约为1百万条路由表项

输入端口的缓存(上面图片的queueing):

  • 当交换机构的速率小于输入端口的汇聚速率时→在输入端口可能要排队
  • 排队延迟以及由于输入缓存溢出造成丢失!
  • Head-of-the-Line (HOL) blocking:排在队头的数据报阻止了队列中其他数据报向前移动

交换结构

  • 将分组从输入缓冲区传输到合适的输出端口
  • 交换速率:分组可以按照该速率从输入传输到输出
  • 运行速度经常是输入/输出链路速率的若干倍
  • N个输入端口:交换机构的交换速度是输入线路速度的N倍比较理想,才不会成为瓶颈
  • 3种典型的交换机构

memory交换结构(通过内存交换):

第一代路由器:

  • 在CPU直接控制下的交换,采用传统的计算机
  • 分组被拷贝到系统内存,CPU从分组的头部提取出目标地址,查找转发表,找到对应的输出端口,拷贝到输出端口
  • 转发速率被内存的带宽限制(数据报通过BUS两遍,如下图)
  • 一次只能转发一个分组

bus交换结构(通过总线交换):

  • 数据报通过共享总线,从输入端口转发到输出端口
  • 总线竞争:交换速度受限于总线带宽
  • 1次处理一个分组
  • 1 Gbps bus, Cisco 1900;32Gbps bus, Cisco 5600;对于接入或企业级路由器,速度足够((但不适合区域或骨干网络)

crossbar交换结构(通过互联网络交换):

  • 同时并发转发多个分组,克服总线带宽限制
  • Banyan(榕树)网络,crossbar(纵横)和其它的互联网络被开发,将多个处理器连接成多处理器
  • 当分组从端口A到达,转给端口Y;控制器短接相应的两个总线
  • 高级设计:将数据报分片为固定长度的信元,通过交换网络交换
  • Cisco12000:以60Gbps的交换速率通过互联网络

输出端口

  • 当数据报从交换机构的到达速度比传输速率快就需要输出端口缓存
  • 由调度规则选择排队的数据报进行传输

输出端口排队

  • 假设交换速率Rswitch是Rine的N倍(N:输入端口的数量)
  • 当多个输入端口同时向输出端口发送时,缓冲该分组(当通过交换网络到达的速率超过输出速率则缓存)
  • 排队带来延迟,由于输出端口缓存溢出则丢弃数据报!

调度机制

  • 调度:选择下一个要通过链路传输的分组(先来先服务)
  • FIFO (first in first out) schedulin:按照分组到来的次序发送
  • 丢弃策略∶如果分组到达一个满的队列,哪个分组将会被抛弃?
  • tail drop:丢弃刚到达的分组
  • priority:根据优先权丢失/移除分组
  • random:随机地丢弃/移除

调度策略:优先权

优先权调度:发送最高优先权的分组

  • 多类,不同类别有不同的优先权
  • 类别可能依赖于标记或者其他的头部字段, e.g.IPsource/ dest,portnumbers,ds,etc.
  • 先传高优先级的队列中的分组,除非没有(只要有高优先级先传它,传完高优先级的再传低的)
  • 高(低)优先权中的分组传输次序:FIFO

调度策略:其他的

Round Robin (RR) scheduling:

  • 多类
  • 循环扫描不同类型的队列,发送完一类的一个分组,再发送下一个类的一个分组,循环所有类(假设分组有红蓝绿三种颜色,先把其中一个红的传完,再把其中一个蓝的传完,最后传其中一个绿的分组,然后周而复始)

三、IP(Internet Protocol)

主机、路由器中的网络层功能:

IP数据报格式

  • 首部长度。因为一个IPv4 数据报可包含一些可变数量的选项(这些选项包括在IPv4 数据报首部中),故需要用这4比特来确定IP数据报中数据部分实际从哪里开始。大多数P数据报不包含选项,所以一般的IP数据报具有20字节的首部。
  • 服务类型。服务类型(TOS)比特包含在IPv4首部中,以便使不同类型的P数据报(例如,一些特别要求低时延、高吞吐量或可靠性的数据报)能相互区别开来。
  • 数据报长度。这是IP数据报的总长度(首部加上数据),以字节计。因为该字段长为16比特,所以P数据报的理论最大长度为65535字节。然而,数据报很少有超过1500字节的。
  • 寿命。寿命(Time-To-Live,TTL)字段用来确保数据报不会永远(如由于长时间的路由选择环路)在网络中循环。每当数据报由一台路由器处理时,该字段的值减1。若TTL字段减为0.则该数据报必须丢弃。
  • 标识、标志、片偏移。这三个字段与所谓P分片有关,这是一个我们将很快要深入考虑的一个问题。有趣的是,新版本的IP(即IPv6)不允许在路由器上对分组分片。
  • 协议。该字段仅在一个IP数据报到达其最终目的地才会有用
  • 首部检验和。首部检验和用于帮助路由器检测收到的IP数据报中的比特错误。
  • 数据(有效载荷)。我们来看看最后的也是最重要的字段,这是数据报存在的首要理由!在大多数情况下,IP数据报中的数据字段包含要交付给目的地的运输层报文段(TCP或UDP)。然而,该数据字段也可承载其他类型的数据,如ICMP报文

注意:一个IP数据报有总长为20字节的首部(假设无选项)。如果数据报承载一个TCP报文段,则每个(无分片的) 数据报共承载了总长40字节的首部(20字节的P首部加上20字节的TCP首部)以及应用层报文。

IP分片和重组

  • 网络链路有MTU(最大传输单元)-链路层帧所携带的最大数据长度
  • 不同的链路类型
  • 不同的MTU
  • 大的IP数据报在网络上被分片(“fragmented”)
  • 一个数据报被分割成若干个小的数据报
  • 相同的ID
  • 不同的偏移量
  • 最后一个分片标记为0
  • “重组”只在最终的目标主机进行
  • IP头部的信息被用于标识,排序相关分片

IPV4

IP编址

  • IP地址:32位标示,对主机或者路由器的接口编址
  • 接口:主机/路由器和物理链路的连接处
  • 路由器通常拥有多个接口
  • 主机也有可能有多个接口
  • IP地址和每一个接口关联
  • 一个IP地址和一个接口相关联

子网

IP地址:

  • 子网部分(高位bits)
  • 主机部分(地位bits)

什么是子网(subnet) ?

  • 一个子网内的节点(主机或者路由器)它们的IP地址的高位部分相同,这些节点构成的网络的一部分叫做子网
  • 无需路由器介入,子网内各主机可以在物理上相互直接到达

方法:

  • 要判断一个子网,将每一个接口从主机或者路由器上分开,构成了一个个网络的孤岛
  • 每一个孤岛(网络)都是一个都可以被称之为subnet

如下:6个子网

IP地址分类

  • Class A: 126(2的7次方 - 2) networks , 16 million hosts
  • Class B: 16382(2的14次方 - 2)networks ,64 K hosts
  • Class C: 2 million(2的21次方) networks ,254 host
  • Class D: multicast
  • Class E: reserved for future

A类B类C类都是单播地址

特殊IP地址

一些约定:

  • 子网部分:全为O—本网络
  • 主机部分:全为O—本主机
  • 主机部分:全为1–广播地址,这个网络的所有主机

特殊IP地址:

127.x.x.x:回路(/测试)地址

内网(专用)IP地址

  • 专用地:地址空间的一部份供专用地址使用
  • 永远不会被当做公用地址来分配,不会与公用地址重复
  • 只在局部网络中有意义,区分不同的设备
  • 路由器不对目标地址是专用地址的分组进行转发
  • 专用地址范围
  • Class A 10.0.0.0-10.255,255.255 MASK 255.0.0.0
  • Class B 172.16.0.0-172.31.255.255 MASK 255.255.0.0
  • Class C 192.168.0.0-192.168.255.255 MASK 255.255.255.0

IP编址:CIDR

CIDR: Classless InterDomain Routing(无类域间路由)

  • 32比特的IP地址被划分为两部分
  • 地址格式: 点分十进制数形式a.b.c.d/x,其中x指示的是第一部分中的比特数(地址中子网号的长度)

子网掩码(subnet mask)

  • 32bits ,0 or 1 in each bit
  • 1:bit位置表示子网部分
  • 0:bit位置表示主机部分
  • 原始的A、B、C类网络的子网掩码分别是
  • A:255.0.0.0: 11111111 00000000 00000000 00000000
  • B:255.255.0.0:11111111 11111111 00000000 00000000
  • C: 255.255.255.0:11111111 11111111 11111111 00000000
  • CIDR下的子网掩码例子:
  • 11111111 11111111 11111100 00000000
  • 另外的一种表示子网掩码的表达方式
  • /#
  • 例:/22:表示前面22个bit为子网部分

转发表和转发算法

  • 获得IP数据报的目标地址
  • 对于转发表中的每一个表项
  • 如(IP Des addr)&(mask) == destination,则按照表项对应的接口转发该数据报
  • 如果都没有找到,则使用默认表项转发数据报

如何获得一个IP地址

Q:主机如何获得一个IP地址?

  • 系统管理员将地址配置在一个文件中
  • Win+el:control-panel->network->configuration->tcp/ip->properties
  • UNIX:/etc/rc.config
  • DHCP:Dynamic Host Configuration Protocol:从服务器中动态获得一个IP地址
  • “plug-and-play”

DHCP(Dynamic Host Confiquration Protocol):

  • 目标:允许主机在加入网络的时候,动态地从服务器那里获得IP地址:
  • 可以更新对主机在用IP地址的租用期——租期快到了
  • 重新启动时,允许重新使用以前用过的IP地址
  • 支持移动用户加入到该网络(短期在网)
  • DHCP工作概况:
  • 主机广播“DHCP discover”报文[ 可选 ]
  • DHCP服务器用“DHCP offer”提供报文响应[ 可选 ]
  • 主机请求IP地址:发送“DHCP request”报文
  • DHCP服务器发送地址:“DHCP ack”报文

通俗的说:主机上线联网的时候先吼一嗓子——有人吗?(discover)然后在线的服务器(可能不止一个回复的)说我在(offer),主机知道有人在,就选择一个服务器请求获取一个IP地址(request),然后被选择的服务器收到请求就给主机一个IP地址(ACK)

  • DHCP返回:
  • IP地址
  • 第一跳路由器的IP地址(默认网关)
  • DNS服务器的域名和IP地址
  • 子网掩码(指示地址部分的网络号和主机号)

Q:如何获得一个网络的子网部分?

A:从ISP获得地址块中分配一个小地址块

Q:一个ISP如何获得一个地址块?

A:ICANN:Internet Corporation for Assigned Names and Numbers

  • 分配地址
  • 管理DNS
  • 分配域名,解决冲突

形式为a.b.c.d/x的地址的x最高比特构成了P地址的网络部分,并且经常被称为该地址的前缀(prefix)(或网络前缀)。一个组织通常被分配一块连续的地址,即具有相同前缀的一段地址。在这种情况下,该组织内部的设备的IP地址将共享共同的前缀。

一个ISP将8个组织连接到因特网的例子(这里的地址例子是点分十进制式表示,所以被点分成了四块(200 23 x y),而IP地址总共32位,所以一块是8位,所以下面说的前20位一样,肉眼你可能看不出来,化成二进制再看):

假设该ISP(我们称之为Fly-By-Night-ISP)向外界通告,它应该发送所有地址的前20比特与200.23.16.0/20相符的数据报。外界的其他部分不需要知道在地址块200.23.16.0/20内实际上还存在8个其他组织,每个组织有自己的子网。这种使用单个网络前缀通告多个网络的能力通常称为地址聚合(address aggregation),也称为路由聚合(route aggregation)或路由摘要( routesummarization)。

NAT(Network Address Translation,网络地址转换)

动机:本地网络只有一个有效IP地址

  • 不需要从ISP分配一块地址,可用一个IP地址用于所有的(局域网)设备–省钱
  • 可以在局域网改变设备的地址情况下而无须通知外界
  • 可以改变ISP(地址变化)而不需要改变内部的设备地址
  • 局域网内部的设备没有明确的地址,对外是不可见的–安全

实现:NAT路由器必须:

  • 外出数据包:替换源地址和端口号为NAT IP地址和新的端口号,目标IP和端口不变
    …远端的C/S将会用NAP IP地址,新端口号作为目标地址
  • 记住每个转换替换对(在NAT转换表中)
    …源IP,端口 vs NAP IP,新端口
  • 进入数据包:替换目标IP地址和端口号,采用存储在NAT表中的mapping表项,用(源IP,端口)

NAT:

  • 16-bit端口字段:
  • 6万多个同时连接,一个局域网!
  • 对NAT是有争议的:
  • 路由器只应该对第3层做信息处理,而这里对端口号(4层)作了处理
  • 违反了end-to-end原则
  • 端到端原则:复杂性放到网络边缘
  • 无需借助中转和变换,就可以直接传送到目标主机
  • NAT可能要被一些应用设计者考虑, 例如:2P applications
  • 外网的机器无法主动连接到内网的机器上
  • 地址短缺问题可以被IPv6解决
  • NAT穿越:如果客户端需要连接在NAT后面的服务器,如何操作

NAT穿越问题:

  • 客户端需要连接地址为10.0.0.1的服务器
  • 服务器地址10.0.0.1 LAN本地地址(客户端不能够使用其作为目标地址)
  • 整网只有一个外部可见地址:138.76.29.7
  • 方案1:静态配置NAT:转发进来的对服务器特定端口连接请求
  • (138.76.29.7, port 2500)总是转发到10.0.0.1 'port 25000
  • 方案2: Universal Plug and Play(UPnP)Internet GatewayDevice (IGD)协议.允许NATted主机可以:
  • 获知网络的公共IP地址(138.76.29.7)
  • 列举存在的端口映射
  • 增/删端口映射(在租用时间内),自动化静态NAT端口映射配置
  • 方案3:中继(used in Skype)
  • NAT后面的服务器建立和中继的连接
  • 外部的客户端链接到中继
  • 中继在2个连接之间桥接

IPV6

动机

  • 初始动机:32-bit地址空间将会被很快用完
  • 另外的动机:
  • 头部格式改变帮助加速处理和转发
  • TTL-1
  • 头部checksum分片
  • 头部格式改变帮助QoS

IPv6数据报格式

  • 固定的40字节头部
  • 数据报传输过程中,不允许分片

IPV6头部(Cont)

  • Priority:标示流中数据报的优先级
  • Flow Label:标示数据报在一个"flow."("flow"的概念没有被严格的定义)
  • 有效载荷长度。该16比特值作为一个无符号整数,给出了IPv6数据报中跟在定长的40字节数据报首部后面的字节数量。
  • 下一个首部。该字段标识数据报中的内容(数据字段)需要交付给哪个协议(如TCP或UDP)。该字段使用与IPv4首部中协议字段相同的值。
  • 跳限制。转发数据报的每台路由器将对该字段的内容减1。如果跳限制计数到达0时,则该数据报将被丢弃。

和IPV4的其他变化

  • Checksum:被移除掉,降低在每一段中的处理速度
  • Options:允许,但是在头部之外,被“NextHeader”字段标示
  • ICMPv6: ICMP的新版本
  • 附加了报文类型, e.g.“Packet Too Big”
  • 多播组管理功能

从IPV4到IPV6的平移

  • 不是所有的路由器都能够同时升级的
  • 没有一个标记日“flag days”
  • 在IPv4和IPv6路由器混合时,网络如何运转?
  • 隧道:在IPv4路由器之间传输的IPv4数据报中携带IPv6数据报(解封装后得到IPV6)

隧道(Tunneling)

假设两个岛上的人都用的IPV6,其他地方都用IPV4,把这些用IPV4的地方比作海洋,一片海洋上只有两个岛屿。这时岛屿内部之间的交流是没问题的(都用的IPV6),但是两个岛屿之间和岛屿怎么交流,中间是海洋(用的是IPV4),这时就可以用隧道来解决,IPV4就充当隧道连接岛屿,从一个岛屿的数据报封装在IPV4的数据报中,通过隧道后,来到另一个岛屿,岛屿将其解封装,拿出IPV6数据报。

IPV6应用

  • Google:8%的客户通过IPv6访问谷歌服务NIST:全美国1/3的政府域支持IPv6估计还需要很长时间进行部署
  • 20年以上!
  • 看看过去20年来应用层面的变化: www, Facebook,streaming media,Skype,…

四、通用转发和SDN

数量众多、功能各异的中间盒

  • 路由器的网络层功能:
  • IP转发:对于到来的分组按照路由表决定如何转发,数据平面
  • 路由:决定路径,计算路由表;处在控制平面
  • 还有其他种类繁多网络设备(中间盒):
  • 交换机;防火墙;NAT;IDS;负载均衡设备
  • 未来:不断增加的需求和相应的网络设备
  • 需要不同的设备去实现不同的网络功能
  • 每台设备集成了控制平面和数据平面的功能
  • 控制平面分布式地实现了各种控制平面功能
  • 升级和部署网络设备非常困难

网络设备控制平面的实现方式特点

  • 互联网网络设备:传统方式都是通过分布式,每台设备的方法来实现数据平面和控制平面功能
  • 垂直集成:每台路由器或其他网络设备,包括:
  • 1)硬件、在私有的操作系统;
  • 2)互联网标准协议(IP, RIP, IS-IS, OSPF, BGP)的私有实现从上到下都由一个厂商提供(代价大、被设备上“绑架”“)
  • 每个设备都实现了数据平面和控制平面的事情
  • 控制平面的功能是分布式实现的
  • 设备基本上只能(分布式升级困难)按照固定方式工作,控制逻辑固化。不同的网络功能需要不同的“middleboxes”:防火墙、负载均衡设备、NAT’ boxes, …
  • (数据+控制平面)集成>>(控制逻辑)分布->固化
  • 代价大;升级困难;管理困难等

传统方式存在的问题:

  • 垂直集成>>昂贵、不便于创新的生态
  • 分布式、固化设备功能==网络设备种类繁多
  • 无法改变路由等工作逻辑,无法实现流量工程等高级特性
  • 配置错误影响全网运行;升级和维护会涉及到全网设备︰管理困难
  • 要增加新的网络功能,需要设计、实现以及部署新的特定设备,设备种类繁多
  • ~2005:开始重新思考网络控制平面的处理方式
  • 集中:远程的控制器集中实现控制逻辑
  • 远程:数据平面和控制平面的分离

解决:SDN(逻辑上集中的控制平面)

一个不同的(通常是远程)控制器和CA交互,控制器决定分组转发的逻辑(可编程),CA所在设备执行逻辑。

SDN主要思路

  • 网络设备数据平面和控制平面分离
  • 数据平面——分组交换机
  • 将路由器、交换机和目前大多数网络设备的功能进一步抽象成:按照流表(由控制平面设置的控制逻辑)进行PDU(帧、分组)的动作(包括转发、丢弃、拷贝、泛洪、阻塞)
  • 统一化设备功能:SDN交换机(分组交换机),执行控制逻辑
  • 控制平面:控制器+网络应用
  • 分离、集中
  • 计算和下发控制逻辑:流表

SDN控制平面和数据平面分离的优势

  • 水平集成控制平面的开放实现(而非私有实现),创造出好的产业生态,促进发展)
  • 分组交换机、控制器和各种控制逻辑网络应用app可由不同厂商生产,专业化,引入竞争形成良好生态
  • 集中式实现控制逻辑,网络管理容易
  • 集中式控制器了解网络状况,编程简单,传统方式困难
  • 避免路由器的误配置
  • 基于流表的匹配+行动的工作方式允许“可编程的”分组交换机
  • 实现流量工程等高级特性
  • 在此框架下实现各种新型(未来)的网络设备

SDN特点

SDN架构:数据平面交换机

数据平面交换机

  • 快速,简单,商业化交换设备采用硬件实现通用转发功能
  • 流表被控制器计算和安装
  • 基于南向API(例如OpenFlow) ,SDN控制器访问基于流的交换机
  • 定义了哪些可以被控制哪些不能
  • 也定义了和控制器的协议(例如:OpenFlow)

SDN架构:SDN控制器

SDN控制器(网络OS)

  • 维护网络状态信息
  • 通过上面的北向API和网络控制应用交互
  • 通过下面的南向API和网络交换机交互
  • 逻辑上集中,但是在实现上通常由于性能、可扩展性、容错性以及鲁棒性采用分布式方法

SDN架构:控制应用

网络控制应用

  • 控制的大脑:采用下层提供的服务(SDN控制器提供的API),实现网络功能
  • 路由器交换机
  • 接入控制防火墙负载均衡
  • 其他功能
  • 非绑定:可以被第三方提供,与控制器厂商以通常上不同,与分组交换机厂商也可以不同

通用转发和SDN

每个路由器包含一个流表(被逻辑上集中的控制器计算和分发)

OpenFlow数据平面抽象

  • 流:由分组(帧)头部字段所定义
  • 通用转发:简单的分组处理规则
  • 模式Pattern:将分组头部字段和流表进行匹配
  • 行动Action:对于匹配上的分组,可以是丢弃、转发、修改、将匹配的分组发送给控制器
  • 优先权Priority:几个模式匹配了,优先采用哪个,消除歧义
  • 计数器Counters:#bytes 以及 #packets

OpenFlow:流表的表项结构

OpenFlow抽象


总结

以上就是计算机网络网络层数据平面内容讲解,控制平面内容请看后续文章,即将发布。

相关文章
|
1月前
|
监控 安全 网络安全
云计算与网络安全:保护数据的关键策略
【9月更文挑战第34天】在数字化时代,云计算已成为企业和个人存储、处理数据的优选方式。然而,随着云服务的普及,网络安全问题也日益凸显。本文将探讨云计算环境中的网络安全挑战,并提供一系列策略来加强信息安全。从基础的数据加密到复杂的访问控制机制,我们将一探究竟如何在享受云服务便利的同时,确保数据的安全性和隐私性不被侵犯。
63 10
|
5天前
|
存储 安全 网络安全
云计算与网络安全:保护数据的新策略
【10月更文挑战第28天】随着云计算的广泛应用,网络安全问题日益突出。本文将深入探讨云计算环境下的网络安全挑战,并提出有效的安全策略和措施。我们将分析云服务中的安全风险,探讨如何通过技术和管理措施来提升信息安全水平,包括加密技术、访问控制、安全审计等。此外,文章还将分享一些实用的代码示例,帮助读者更好地理解和应用这些安全策略。
|
10天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
12天前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据
【10月更文挑战第21天】在这篇文章中,我们将探讨云计算和网络安全的关系。随着云计算的普及,网络安全问题日益突出。我们将介绍云服务的基本概念,以及如何通过网络安全措施来保护您的数据。最后,我们将提供一些代码示例,帮助您更好地理解这些概念。
|
1月前
|
缓存 监控 网络协议
计算机网络的常用的网络通信命令(Windows)
本文介绍了网络技术中常用的命令,如ping用于检测网络连通性,ipconfig查看TCP/IP配置,netstat监控网络状态,arp显示和修改ARP缓存,at安排任务执行,tracert追踪路由,以及nbtstat获取NetBIOS信息。
26 1
|
1月前
|
SQL 安全 测试技术
网络安全与信息安全:保护数据的艺术
【9月更文挑战第36天】在数字化时代,网络安全和信息安全已成为维护个人隐私和企业资产的基石。本文深入探讨了网络安全漏洞、加密技术以及安全意识的重要性,旨在为读者提供一份知识宝典,帮助他们在网络世界中航行而不触礁。我们将从网络安全的基本概念出发,逐步深入到复杂的加密算法,最后强调培养安全意识的必要性。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你打开一扇了解和实践网络安全的大门。
34 2
|
21天前
|
安全 区块链 数据库
|
28天前
|
网络协议 网络架构
【第三期】计算机网络常识/网络分层模型与数据包封装传输过程
【第三期】计算机网络常识/网络分层模型与数据包封装传输过程
43 0
|
5天前
|
存储 缓存 网络协议
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点,GET、POST的区别,Cookie与Session
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点、状态码、报文格式,GET、POST的区别,DNS的解析过程、数字证书、Cookie与Session,对称加密和非对称加密
|
6天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议