简单
给定一个二叉树
root
,返回其最大深度。二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:3
示例 2:
输入:root = [1,null,2]
输出:2
提示:
- 树中节点的数量在
[0, 104]
区间内。-100 <= Node.val <= 100
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ int han(struct TreeNode *root) { if(root==NULL) return 0; int nums=0; nums=fmax(nums,han(root->left)+1); nums=fmax(nums,han(root->right)+1); return nums; } int maxDepth(struct TreeNode* root){ if(root==NULL) return 0; return han(root); }
简单
给你两棵二叉树的根节点
p
和q
,编写一个函数来检验这两棵树是否相同。如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
示例 1:
输入:p = [1,2,3], q = [1,2,3]
输出:true
示例 2:
输入:p = [1,2], q = [1,null,2]
输出:false
示例 3:
输入:p = [1,2,1], q = [1,1,2]
输出:false
提示:
- 两棵树上的节点数目都在范围
[0, 100]
内-104 <= Node.val <= 104
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ bool pan(struct TreeNode* p, struct TreeNode* q) { while(1) { if(q==NULL&&p==NULL) return true; if(q==NULL||p==NULL) return false; if(q->val!=p->val) { return false; } return pan(p->left,q->left)&&pan(p->right,q->right); } return true; } bool isSameTree(struct TreeNode* p, struct TreeNode* q){ return pan( p, q); }
简单
给你一棵二叉树的根节点
root
,翻转这棵二叉树,并返回其根节点。示例 1:
输入:root = [4,2,7,1,3,6,9]
输出:[4,7,2,9,6,3,1]
示例 2:
输入:root = [2,1,3]
输出:[2,3,1]
示例 3:
输入:root = []
输出:[]
提示:
- 树中节点数目范围在
[0, 100]
内-100 <= Node.val <= 100
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ void Traversal(struct TreeNode* root) { if(root==NULL) { return; } //左右子节点交换位置 //自上而下 struct TreeNode* temp; temp = root->left; root->left = root->right; root->right = temp; //左 Traversal(root->left); //右 Traversal(root->right); } struct TreeNode* invertTree(struct TreeNode* root) { Traversal(root); return root; }
简单
给你一个二叉树的根节点
root
, 检查它是否轴对称。示例 1:
输入:root = [1,2,2,3,4,4,3]
输出:true
示例 2:
输入:root = [1,2,2,null,3,null,3]
输出:false
提示:
- 树中节点数目在范围
[1, 1000]
内-100 <= Node.val <= 100
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ bool pan(struct TreeNode *q,struct TreeNode *p) { if(q==NULL&&p==NULL) return true; if(q==NULL||p==NULL) return false; if(q->val!=p->val) return false; return pan(q->left,p->right)&&pan(q->right,p->left); } bool isSymmetric(struct TreeNode* root){ return pan(root->left,root->right); }
中等
给定两个整数数组
preorder
和inorder
,其中preorder
是二叉树的先序遍历,inorder
是同一棵树的中序遍历,请构造二叉树并返回其根节点。示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1]
输出: [-1]
提示:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
和inorder
均 无重复 元素inorder
均出现在preorder
preorder
保证 为二叉树的前序遍历序列inorder
保证 为二叉树的中序遍历序列
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ int pSize; int iSize; //自上往下 void bt(struct TreeNode* root,int* preorder,int startp, int preorderSize, int* inorder,int starti, int inorderSize) { if(starti>inorderSize||startp>preorderSize||preorderSize>=pSize||inorderSize>=iSize){ free(root); return; } root->val=preorder[startp]; int i=starti; for(;i<inorderSize;i++){ if(preorder[startp]==inorder[i]){ break; } } if(!((starti)>(i-1)||(startp+1)>(i-starti+startp)||(i-starti+startp)>=pSize||(i-1)>=iSize)){ root->left=(struct TreeNode*)calloc(1, sizeof(struct TreeNode)); bt(root->left,preorder,startp+1,i-starti+startp,inorder,starti,i-1); } if(!((i+1)>inorderSize||(i-starti+startp+1)>preorderSize||preorderSize>=pSize||inorderSize>=iSize)){ root->right=(struct TreeNode*)calloc(1, sizeof(struct TreeNode)); bt(root->right,preorder,i-starti+startp+1,preorderSize,inorder,i+1,inorderSize); } } struct TreeNode* buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize) { struct TreeNode* root = (struct TreeNode*)calloc(1, sizeof(struct TreeNode)); if(root==NULL){ printf("错误\n"); } pSize=preorderSize; iSize=inorderSize; bt(root,preorder,0,preorderSize-1,inorder,0,inorderSize-1); return root; }