网络拓扑结构入门快速介绍

本文涉及的产品
云防火墙,500元 1000GB
简介: 网络拓扑结构入门快速介绍

N.1 网络设备图标介绍

(1)一层交换机是指工作于OSI模型的第1层(物理层)只支持物理层协议的交换机(例如电话程控交换机);

(2)二层交换机是指工作于OSI模型的第2层(数据链路层)支持物理层和数据链路层协议的交换机

例如以太网交换机);

(3)三层交换机是指工作在OSI网络标准模型的第3层(网络层)支持物理层、数据链路层及网络层协议具有部分路由器功能的交换机

N.2 网络层次架构

1)接入层交换机的特点与功能

我们通常将网络中直接面向用户连接或访问网络的部分称为接入层,也就相当于公司架构里的基层员工。

2)汇聚层交换机的特点与功能

不难理解,汇聚层也就相当于公司的中层管理,用来连接核心层和接入层,处于中间位置,它的上行是核心交换机,下行是接入层交换。汇聚层具有实施策略、安全、工作组接入、虚拟局域网(VLAN)之间的路由、源地址或目的地址过滤等多种功能,但很多情况下,许多公司是直接省略汇聚层。

3)核心层交换机的特点与功能

核心层是网络主干部分,是整个网络性能的保障,其设备包括路由器、防火墙、核心层交换机等等,相当于公司架构里的管理高层。核心层交换机的主要目的在于通过高速转发通信,提供快速、可靠的骨干传输结构,因此核心层交换机应该具有如下特性:可靠性、高效性、冗余性、容错性、可管理性、适应性、低延时性等。

N.3 关于层数交换机区别

(1)一层交换机是指工作于OSI模型的第1层(物理层)只支持物理层协议的交换机(例如电话程控交换机);

(2)二层交换机是指工作于OSI模型的第2层(数据链路层)支持物理层和数据链路层协议的交换机例如以太网交换机);

(3)三层交换机是指工作在OSI网络标准模型的第3层(网络层)支持物理层、数据链路层及网络层协议具有部分路由器功能的交换机

N.4 交换机和路由器拓扑图介绍

1)广域网和局域网

LAN:Local Area Network。

WAN:Wide Area Network。

顾名思义LAN就是局域网接口,WAN就是广域网接口。实际地说,宽带路由器中,接入外部Internet的接口是WAN口,而与内部PC相连的是LAN口。一般的路由器具有1个WAN,多个LAN。路由器WAN接口连接的是外网,拉进来的网线就是接这个接口。也就是进来的线用这个口。连猫用的它是一个接受信号的口。路由器LAN接口是连接的内网,家里如有几台设备需要拉线上网都是从这个接口接出去的。这是一个输出口。

2)交换机和路由器

交换机是管理一个小部分的网络PC,而交换机是管理不同的网络PC.

路由器的网关实现:‘网关’一个大概念,不具体特指一类产品,只要连接两个不同的网络的设备都可以叫网关;而‘路由器’么一般特指能够实现路由寻找和转发的特定类产品,路由器很显然能够实现网关的功能。

3)配置线的介绍

(1)直通线(标准568B):两端线序一样,从左至右线序是:白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。

(2)交叉线(标准568A):一端为正线的线序,另一端为从左至右:白绿,绿,白橙,蓝,白蓝,橙,白棕,棕。

(3)使用场合:同类型的设备用交叉线,不同类型的用直通线。

流量,并向核心层提供上行链路。

N.5 路由器和防火墙区别区别

1)介绍

常用的网关设备是路由器。网关的作用主要是用来连接两个不同的网络,比如可以连接两个IP地址不相同的网络,总之网关是一种中间媒介。而防火墙也可以做网关,但它的主要做用只是用来防病毒或防黑客,网关只算是防火墙的一个功能“之一”。防火墙相当于路由器+过滤器结构。

2)ACL访问控制技术

ACL使用包过滤技术,在路由器上读取第三层及第四层包头中的信息如源地址、目的地址、源端口、目的端口等,根据预先定义好的规则对包进行过滤,从而达到访问控制的目的。ACL的主要功能就是一方面保护资源节点,阻止非法用户对资源节点的访问,另一方面限制特定的用户节点所能具备的访问权限。

3)路由器ACL和防火墙ACL根本目的不同

路由器的根本目的是: 保持网络和数据的“通”。

防火墙根本的的目的是: 保证任何非允许的数据包“不通”。

4)防火墙的SNET和DNET

SNET: 将内网IP映射为公网IP

DNET: 将公网IP映射为内网IP

相关文章
|
8天前
|
人工智能 运维 API
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
|
1月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
47 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
1月前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
110 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
1月前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
79 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
1月前
|
机器学习/深度学习 自动驾驶 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
127 13
|
2月前
|
边缘计算 负载均衡 监控
静态代理IP与动态网络拓扑的协同发展
随着科技和互联网的发展,越来越多企业依赖代理服务。静态代理IP与网络拓扑结构的有效融合能显著提升网络性能、安全性和管理效率。通过合理设计网络拓扑、分配静态代理IP,并结合监控和安全策略,可优化数据流、实现负载均衡,确保高效安全的数据传输。未来,云计算、边缘计算及AI技术将进一步推动这一融合,形成更灵活高效的网络架构。
53 1
|
3月前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
103 8
|
3月前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
160 2
|
3月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
129 3
|
3月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
221 3
图卷积网络入门:数学基础与架构设计

热门文章

最新文章