ARM系列 -- 虚拟化(三)

简介: ARM系列 -- 虚拟化(三)

为了实现虚拟化,虚拟机需要控制系统资源。但是实际的系统资源是在hypervisor直接控制之下,为了实现隔离和安全等方面的考虑,不可能让虚拟机直接控制这些系统资源。

比如,虚拟机想根据具体情况去做电源管理。一个解决办法就是利用“陷入和模拟(Trap and Emulate)”模型。当虚拟机想要执行特权指令时,会触发异常,陷入到hypervisor,随后由hypervisor模拟执行。

对于VM来说,一个直接分配的外设是真实的物理设备,并映射到IPA地址空间,所以VM可以直接软件访问该设备。

但是对于VM来说,一个虚拟设备是hypervisor模拟出来的,VM认为可以通过软件直接访问,但实际上是要通过hypervisor的。为了模拟一个外围设备,hypervisor不仅需要知道访问了哪个外设,还需要知道访问了该外设中的哪个寄存器,访问是读还是写,访问的大小,以及用于传输数据的寄存器。

从地址开始,异常模型引入了FAR_ELx寄存器。在处理stage 1 faults时,这些寄存器报告触发异常的虚拟地址。虚拟地址对hypervisor没有帮助,因为hypervisor通常不知道guest OS如何配置其虚拟地址空间。

对于stage 2 faults,还有一个附加寄存器HPFAR_EL2,用于报告中止的地址的IPA。

由于IPA空间由hypervisor控制,因此它可以使用此信息来确定需要模拟的寄存器。

异常模型显示ESR_ELx寄存器如何报告有关异常的信息。对于触发stage2 fault的单个通用寄存器加载或存储,提供了附加的综合征信息。此信息包括访问的大小和源或目标寄存器,并允许hypervisor确定对虚拟外设的访问类型。

下图展示了一个陷入,然后模拟访问的过程。

  • VM的软件尝试访问虚拟外设,这个例子当中是虚拟UART的接收FIFO。
  • 该访问被stage 2转换block住,导致一个abort异常被送到EL2。
    异常处理程序查询ESR_EL2关于异常的信息,如访问长度,目的寄存器,是load或store操作。
    异常处理程序查询HPFAR_EL2,取得发生abort的IPA地址。
  • Hypervisor使用来自ESR_EL2和HPFAR_EL2的信息来标识所访问的虚拟外围设备寄存器。此信息允许hypervisor模拟该操作。然后通过ERET返回vCPU。指令在LDR之后重新执行。

到目前为止,我们已经考虑了来自处理器的不同访问类型。系统中的其它主机(如DMA控制器)可能分配给VM使用。我们也需要一些方法来将stage 2的保护延伸到那些主机上。考虑一个不使用虚拟化的DMA控制器的系统,如下图所示:

DMA控制器将通过驱动程序编程,通常在内核空间中。内核空间驱动程序可以确保操作系统级内存保护不被破坏。这意味着一个应用程序不能使用DMA访问它不应该看到的内存。

让我们考虑同一个系统,但是操作系统运行在一个虚拟机中,如下图所示:

在此系统中,hypervisor使用stage 2在虚拟机之间提供隔离。软件查看内存的能力受到hypervisor的限制。允许VM中的驱动程序直接与DMA控制器交互会产生两个问题:

  • 隔离:DMA控制器不受stage 2表的约束,可以用来破坏VM的沙箱。
  • 地址空间:有两个转换阶段,内核认为是PAs的是IPAs。DMA控制器仍然可以看到PAs,因此内核和DMA控制器具有不同的内存视图。为了克服这个问题,hypervisor可以捕获VM和DMA控制器之间的每个交互,提供必要的转换。但是当内存碎片化时,此过程效率低下且存在问题。

除了捕获和模拟驱动程序访问之外,另一种方法是扩展stage 2机制,以覆盖其它主机,如我们的DMA控制器。当这种情况发生时,这些主机还需要一个MMU。这称为系统内存管理单元(System Memory Management,SMMU):

这样,hypervisor只要负责对SMMU进行编程,以便上游的主机(在示例中是DMA控制器)可以看到与分配给它的VM相同的内存视图。在intel体系中,对应的是IOMMU,名字虽然不一样,但是原理是一样的。

最后,再来强调一下陷入与模拟。看这个例子,CPU在idle时可以执行WFI(wait for interrupt)指令来进入低功耗模式。当在OS的idle loop里面执行WFI时,会陷入到hypervisor里面模拟。这时hypervisor通常会调度另一个vCPU执行。

使用陷入和模拟的另一个例子是提供寄存器的虚拟值。例如,ID_AA64MMFR0_EL1报告对处理器中内存系统相关功能的支持。操作系统可能在引导时读取此寄存器,以确定内核中要启用的功能。

而Hypervisor可能希望向OS提供一个不同的值,也就是虚拟值。为此,hypersivor启用覆盖寄存器读取的陷阱。在陷入异常情况下,hypervisor确定触发了哪个陷阱,然后模拟操作。

使用陷入来虚拟化操作需要大量计算。比如功能寄存器ID_AA64MMFR0_EL1,不经常被操作系统访问。当将对这些寄存器的访问捕获到虚拟机监控程序中以模拟读取时,计算是可以接受的。

但是对于访问频率高的寄存器,比如MPIDR_EL1,或者在性能关键代码中,需要尽可能地优化陷入,对这些寄存器,ARM提供了其它策略,hypervisor可以在进入VM时先配置好这些寄存器的值。例如,当VM中读到MPIDR_EL1时会自动返回VMPIDR_EL2的值而不发生陷入。



目录
相关文章
|
存储 监控 安全
ARM系列 -- 虚拟化(二)
ARM系列 -- 虚拟化(二)
287 0
|
安全 Linux KVM
ARM系列 -- 虚拟化(一)
ARM系列 -- 虚拟化(一)
393 0
|
传感器 缓存 虚拟化
「Arm Arch」 虚拟化微架构
「Arm Arch」 虚拟化微架构
316 0
|
8月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
1231 61
|
8月前
|
消息中间件 数据可视化 Kafka
docker arm架构部署kafka要点
本内容介绍了基于 Docker 的容器化解决方案,包含以下部分: 1. **Docker 容器管理**:通过 Portainer 可视化管理工具实现对主节点和代理节点的统一管理。 2. **Kafka 可视化工具**:部署 Kafka-UI 以图形化方式监控和管理 Kafka 集群,支持动态配置功能, 3. **Kafka 安装与配置**:基于 Bitnami Kafka 镜像,提供完整的 Kafka 集群配置示例,涵盖 KRaft 模式、性能调优参数及数据持久化设置,适用于高可用生产环境。 以上方案适合 ARM64 架构,为用户提供了一站式的容器化管理和消息队列解决方案。
692 10
|
9月前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。
|
11月前
|
弹性计算 编解码 运维
飞天技术沙龙回顾:业务创新新选择,倚天 Arm 架构深入探讨
飞天技术沙龙回顾:业务创新新选择,倚天 Arm 架构深入探讨
276 1
|
12月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
1672 10
|
人工智能 芯片 Windows
ARM架构PC退货率与CEO策略透视
ARM架构PC退货率与CEO策略透视