Linux内核中USB设备驱动实现

简介: Linux内核中USB设备驱动实现

USB 设备驱动:

一、USB 描述符:(存在于USB 的E2PROM里面)

1、 设备描述符:struct usb_device_descriptor

2、 配置描述符:struct usb_config_descriptor

3、 接口描述符:struct usb_interface_descriptor

4、 端点描述符:struct usb_endpoint_descriptor

通过命令lsusb 列出系统中所有的USB设备:

通过命令lsusb -v 列出系统中所有的USB设备的各个描述符信息:

设备描述符:

struct usb_device_descriptor {
    __u8  bLength; ///长度
    __u8  bDescriptorType; ///描述符类型
    __le16 bcdUSB;
    __u8  bDeviceClass;///设备类型
    __u8  bDeviceSubClass;///设备子类型
    __u8  bDeviceProtocol;///协议
    __u8  bMaxPacketSize0;///最大传输大小
    __le16 idVendor;///厂商 ID
    __le16 idProduct;///设备 ID
    __le16 bcdDevice;///
    __u8  iManufacturer;
    __u8  iProduct;
    __u8  iSerialNumber;///序列号
    __u8  bNumConfigurations;///包含的配置数目(每个USB设备会对应多个配置)
} __attribute__ ((packed));

配置描述符:

struct usb_config_descriptor {         ///USB 配置描述符
         __u8  bLength;
         __u8  bDescriptorType;
 
         __le16 wTotalLength;///总长度
         __u8  bNumInterfaces;///接口数目(每个接口代表一种功能)
         __u8  bConfigurationValue;///
         __u8  iConfiguration;
         __u8  bmAttributes;
         __u8  bMaxPower;
} __attribute__ ((packed));

接口描述符:

struct usb_interface_descriptor { ///USB 接口描述符
         __u8  bLength;
         __u8  bDescriptorType;
 
         __u8  bInterfaceNumber;
         __u8  bAlternateSetting;
         __u8  bNumEndpoints;
         __u8  bInterfaceClass;
         __u8  bInterfaceSubClass;
         __u8  bInterfaceProtocol;
         __u8  iInterface;
} __attribute__ ((packed));

端点描述符:

struct usb_endpoint_descriptor {   ///USB 端点描述符(每个USB设备最多有16个端点)
         __u8  bLength; ///描述符的字节长度
         __u8  bDescriptorType;///描述符类型,对于端点就是USB_DT_ENDPOINT
 
         __u8  bEndpointAddress;///bit0~3表示端点地址,bit8 表示方向,输入还是输出
         __u8  bmAttributes;///属性(bit0、bit1构成传输类型,00--控制,01--等时,10--批量,11--中断)
         __le16 wMaxPacketSize;///端点一次可以处理的最大字节数
         __u8  bInterval;///希望主机轮询自己的时间间隔
 
         /* NOTE:  these two are _only_ in audio endpoints. */
         /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */
         __u8  bRefresh;
         __u8  bSynchAddress;
} __attribute__ ((packed));

二、USB的传输方式:(不同的设备对于传输的数据各有各的要求)

1、 控制传输---获取/配置设备

2、 中断传输---例如USB鼠标、USB键盘(这里说的中断和硬件上下文的中断不一样,它不是设备主动发送一个中断请求,而是主控制器在保证不大于某个时间间隔interval内安排的一次数据传输)

3、 批量传输---用于大容量数据传输,没有固定的传输速率,例如usb打印机、扫描仪、U盘等,对应的端点就叫批量端点

4、 等时传输---可以传输大批量数据,但是对数据是否到达没有保证,对实时性要求很高, 例如音频、视频等设备(USB摄像头、USB话筒),对应的端点就叫等时端点

三、URB(usb request block),USB请求块

urb 是usb数据传输机制使用的核心数据结构,urb供usb协议栈使用;

struct urb { //由主机控制器发送给USB设备
    struct kref kref;        /* reference count of the URB */
    void *hcpriv;            /* private data for host controller */
    atomic_t use_count;        /* concurrent submissions counter */
    atomic_t reject;        /* submissions will fail */
    struct list_head urb_list;    /* list head for use by the urb's
                     * current owner */
    struct list_head anchor_list;    /* the URB may be anchored */
    struct usb_anchor *anchor;
    struct usb_device *dev;        /* (in) pointer to associated device */ ///urb所发送的目标指针,在urb可以被发送到USB核心之前必须由USB驱动程序初始化
    struct usb_host_endpoint *ep;    /* (internal) pointer to endpoint */
    unsigned int pipe;    //通过端点的number来得到,决定了主机数据要发送给哪一个设备
    unsigned int stream_id;        /* (in) stream ID */
    int status;            /* (return) non-ISO status */
    unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
    void *transfer_buffer;        /* (in) associated data buffer */ ///in---接收数据buffer,out----发送数据buffer
    dma_addr_t transfer_dma;    /* (in) dma addr for transfer_buffer *存在于支持DMA的设备
    struct scatterlist *sg;        /* (in) scatter gather buffer list */
    int num_mapped_sgs;        /* (internal) mapped sg entries */
    int num_sgs;            /* (in) number of entries in the sg list */
    u32 transfer_buffer_length;    /* (in) data buffer length */
    u32 actual_length;        /* (return) actual transfer length */
    unsigned char *setup_packet;    /* (in) setup packet (control only) */
    dma_addr_t setup_dma;        /* (in) dma addr for setup_packet */
    int start_frame;        /* (modify) start frame (ISO) */
    int number_of_packets;        /* (in) number of ISO packets */
    int interval;            /* (modify) transfer interval ///主机轮询的时间间隔
    void *context;            /* (in) context for completion *上下文
    usb_complete_t complete;    /* (in) completion routine *完成例程(回调)--当主机发送完urb,设备返回回应信号时执行
};

urb的使用方法:

1、 分配urb

struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); //\drivers\usb\core\urb.c

2、 初始化urb

void usb_fill_[control | int | bulk]_urb{ } ///对应控制传输、中断传输、批量传输

3、 提交urb(提交给主控制器,由主控制器发送给USB设备)

(1) 异步提交urb,提交完成后执行通过usb_fill_[control | int | bulk]_urb 传入的回调函数

int usb_submit_urb(struct urb *urb, gfp_t mem_flags); //\drivers\usb\core\urb.c

(2) 同步提交urb

int usb_[control | interrupt | bulk]_msg () //\drivers\usb\core\Message.c

四、usb驱动数据结构 usb_device

1 struct usb_device {  ///描述一个USB 设备
 2     int        devnum;
 3     char        devpath[16];
 4     u32        route;
 5     enum usb_device_state    state;
 6     enum usb_device_speed    speed;
 7 
 8     struct usb_tt    *tt;
 9     int        ttport;
10 
11     unsigned int toggle[2];
12 
13     struct usb_device *parent;
14     struct usb_bus *bus;
15     struct usb_host_endpoint ep0;
16 
17     struct device dev;
18 
19     struct usb_device_descriptor descriptor;
20     struct usb_host_bos *bos;
21     struct usb_host_config *config;
22 
23     struct usb_host_config *actconfig;
24     struct usb_host_endpoint *ep_in[16];
25     struct usb_host_endpoint *ep_out[16];
26 
27     char **rawdescriptors;
28 
29     unsigned short bus_mA;
30     u8 portnum;
31     u8 level;
32 
33     unsigned can_submit:1;
34     unsigned persist_enabled:1;
35     unsigned have_langid:1;
36     unsigned authorized:1;
37     unsigned authenticated:1;
38     unsigned wusb:1;
39     unsigned lpm_capable:1;
40     unsigned usb2_hw_lpm_capable:1;
41     unsigned usb2_hw_lpm_besl_capable:1;
42     unsigned usb2_hw_lpm_enabled:1;
43     unsigned usb2_hw_lpm_allowed:1;
44     unsigned usb3_lpm_enabled:1;
45     int string_langid;
46 
47     /* static strings from the device */
48     char *product;
49     char *manufacturer;
50     char *serial;
51 
52     struct list_head filelist;
53 
54     int maxchild;
55 
56     u32 quirks;
57     atomic_t urbnum;
58 
59     unsigned long active_duration;
60 
61 #ifdef CONFIG_PM
62     unsigned long connect_time;
63 
64     unsigned do_remote_wakeup:1;
65     unsigned reset_resume:1;
66     unsigned port_is_suspended:1;
67 #endif
68     struct wusb_dev *wusb_dev;
69     int slot_id;
70     enum usb_device_removable removable;
71     struct usb2_lpm_parameters l1_params;
72     struct usb3_lpm_parameters u1_params;
73     struct usb3_lpm_parameters u2_params;
74     unsigned lpm_disable_count;
75 };

五、 管道

每个端点通过管道和usb主控制器连接,管道包括以下几个部分:

(1) 端点地址

(2) 数据传输方向(in 或 out)

(3) 数据传输模式

usb_[rcv| snd| ctrl| int| bulk| isoc ]pipe

根据端点地址、传输方式和传输方向创建不同的pipe:

#define usb_sndctrlpipe(dev, endpoint)    \
    ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
#define usb_rcvctrlpipe(dev, endpoint)    \
    ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
#define usb_sndisocpipe(dev, endpoint)    \
    ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
#define usb_rcvisocpipe(dev, endpoint)    \
    ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
#define usb_sndbulkpipe(dev, endpoint)    \
    ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
#define usb_rcvbulkpipe(dev, endpoint)    \
    ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
#define usb_sndintpipe(dev, endpoint)    \
    ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
#define usb_rcvintpipe(dev, endpoint)    \
    ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN
目录
相关文章
|
8天前
|
存储 Linux 数据处理
探索Linux操作系统的内核与文件系统
本文深入探讨了Linux操作系统的核心组件,包括其独特的内核结构和灵活的文件系统。文章首先概述了Linux内核的主要功能和架构,接着详细分析了文件系统的工作原理以及它如何支持数据存储和检索。通过比较不同的文件系统类型,本文旨在为读者提供一个关于如何根据特定需求选择合适文件系统的参考框架。
|
13天前
|
安全 算法 网络协议
探索Linux操作系统的内核管理
【5月更文挑战第31天】本文将深入探讨Linux操作系统的内核管理机制,包括其设计原则、主要组件以及它们如何协同工作以提供高效的系统性能。通过分析Linux内核的关键特性和功能,我们将揭示这一开源操作系统如何在各种计算环境中保持其稳定性和灵活性。
|
14天前
|
机器学习/深度学习 人工智能 负载均衡
深度解析:Linux内核调度策略的演变与优化
【5月更文挑战第30天】 随着计算技术的不断进步,操作系统的性能调优成为了提升计算机系统效率的关键。在众多操作系统中,Linux因其开源和高度可定制性而备受青睐。本文将深入剖析Linux操作系统的内核调度策略,追溯其历史演变过程,并重点探讨近年来为适应多核处理器和实时性要求而产生的调度策略优化。通过分析比较不同的调度算法,如CFS(完全公平调度器)、实时调度类和批处理作业的调度需求,本文旨在为系统管理员和开发者提供对Linux调度机制深层次理解,同时指出未来可能的发展趋势。
|
1天前
|
Linux 编译器 C语言
编译Linux内核:基础、重要性和交叉编译方法
Linux内核作为操作系统的心脏,负责管理计算机的硬件资源,同时也是运行所有其他程序的基础。理解如何编译Linux内核对于系统管理员、开发者乃至高级用户来说都是一项极其宝贵的技能。本文将介绍编译Linux内核的基本知识、编译的重要性、具体步骤以及交叉编译的概念。
12 0
|
7天前
|
运维 NoSQL Ubuntu
深入理解Linux中的"crash"命令:内核崩溃的调试利器
`crash`是Linux内核崩溃调试工具,用于分析内核崩溃转储文件,提供GDB-like的交互式CLI。通过加载`vmcore`文件和内核映像,管理员可以查看系统状态、调用栈、内存布局等。安装`crash`可使用包管理器,如`apt-get`或`yum/dnf`。尽管有学习曲线且依赖转储文件,但`crash`在系统故障排查中极其重要。
|
8天前
|
Linux 数据安全/隐私保护 Windows
linux 搭建cloudreve win映射网络驱动器WebDav
linux 搭建cloudreve win映射网络驱动器WebDav
|
9天前
|
传感器 物联网 Linux
物联网设备的操作系统之争:Linux vs RTOS
【6月更文挑战第4天】在遥远的数码星球,物联网城中的Linux先生与RTOS小姐展开激烈角逐,分别在操作系统领域各显神通。Linux先生以其开源、兼容性强、功能丰富占据服务器、桌面及嵌入式设备市场,适合处理复杂任务和需要强大计算能力的设备。而RTOS小姐以实时性、高效响应和低资源占用见长,适用于资源有限、强调实时性的物联网设备。设备制造商在两者间抉择,引发物联网设备操作系统的选择大战。通过Python与FreeRTOS示例,展现了两者在智能家居和生产线控制等场景的应用。在物联网世界,Linux与RTOS共同推动设备智能化,为生活带来更多便捷。
62 3
|
29天前
|
负载均衡 算法 Linux
深度解析:Linux内核调度器的演变与优化策略
【4月更文挑战第5天】 在本文中,我们将深入探讨Linux操作系统的核心组成部分——内核调度器。文章将首先回顾Linux内核调度器的发展历程,从早期的简单轮转调度(Round Robin)到现代的完全公平调度器(Completely Fair Scheduler, CFS)。接着,分析当前CFS面临的挑战以及社区提出的各种优化方案,最后提出未来可能的发展趋势和研究方向。通过本文,读者将对Linux调度器的原理、实现及其优化有一个全面的认识。
|
7月前
|
存储 算法 Linux
探索Linux内核内存伙伴算法:优化系统性能的关键技术!
探索Linux内核内存伙伴算法:优化系统性能的关键技术!
|
编译器 Linux C语言
Linux内核27-优化和内存屏障
Linux内核27-优化和内存屏障