轻量级的嵌入式模块化软件架构

简介: 轻量级的嵌入式模块化软件架构

嵌入式没有软件架构师这一职位的说法,但并不代表嵌入式开发不需要软件架构。一个好的软件框架能让编码效率提升,同时,也能让代码更加健壮,从而减少维护成本。

今天就给大家分享一个专为嵌入式系统设计的轻量级框架:mr-library.

mr-library简介

mr-library 是一个面向嵌入式系统的轻量级框架,提供统一的底层驱动设备模型以及基础服务功能,具有模块化设计、可配置性和扩展性的特点, 可帮助开发者快速构建嵌入式应用程序。

mr-library 框架支持互斥锁、对象管理等基础内核功能。集成异步事件驱动框架(event)、多时基软件定时器(soft-timer) 等服务。提供串口、SPI、I2C、ADC/DAC等常见外设的驱动设备模型,通过统一的驱动接口(open、close、ioctl、read、write)访问底层硬件设备,解耦底层驱动和应用。

应用场景

  • MCU开发的低层驱动程序。
  • RTOS实时操作系统的外挂框架(作为驱动设备框架使用)。
  • 各类IoT和智能硬件产品的快速开发。

驱动设备框架

开发者能以面向对象的方式访问外设,简化驱动逻辑的开发流程。框架实现了常用外设的通用驱动模板,开发者可以快速移植到不同的硬件平台。

驱动设备框架支持普通设备的通用接口、总线设备自动总线控制、多种设备的中断接管。

驱动设备接口

设备驱动框架提供统一的操作接口,设备的所有操作都需要通过以下接口实现:

接口 描述
mr_device_add 添加设备
mr_device_find 查找设备
mr_device_open 打开设备
mr_device_close 关闭设备
mr_device_ioctl 控制设备
mr_device_read 从设备读取数据
mr_device_write 向设备写入数据

SPI设备使用示例:

/* 定义SPI设备 */
#define SPI_DEVICE0_CS_PIN              10
#define SPI_DEVICE1_CS_PIN              20
struct mr_spi_device spi_device0, spi_device1;
/* 添加SPI设备 */
mr_spi_device_add(&spi_device0, "spi10", SPI_DEVICE0_CS_PIN);
mr_spi_device_add(&spi_device1, "spi11", SPI_DEVICE1_CS_PIN);
/* 查找SPI设备 */
mr_device_t spi0_device = mr_device_find("spi10");
mr_device_t spi1_device = mr_device_find("spi11");
/* 挂载总线 */
mr_device_ioctl(spi0_device, MR_CTRL_ATTACH, "spi1");
mr_device_ioctl(spi1_device, MR_CTRL_ATTACH, "spi1");
/* 以可读可写的方式打开SPI设备 */
mr_device_open(spi0_device, MR_OPEN_RDWR);
mr_device_open(spi1_device, MR_OPEN_RDWR);
/* 发送数据 */
char buffer0[] = "hello";
char buffer1[] = "world";
mr_device_write(spi0_device, 0, buffer0, sizeof(buffer0) - 1);
mr_device_write(spi1_device, 0, buffer1, sizeof(buffer1) - 1);
/* 读取数据 */
mr_device_read(spi0_device, 0, buffer0, sizeof(buffer0) - 1);
mr_device_read(spi1_device, 0, buffer1, sizeof(buffer1) - 1);
/* 关闭设备 */
mr_device_close(spi0_device);
mr_device_close(spi1_device);

服务框架

mr-library 框架集成了轻量级的服务框架,用于构建嵌入式开发中的应用服务,支持异步事件监听,多时基软件定时器等。通过服务框架完成对应用层不同应用间的解耦,实现应用程序的模块化,可裁剪,业务逻辑清晰,开发快速,代码高度复用。

事件服务

事件服务是一种异步事件处理机制,它通过事件分发和回调的方式,可以有效地提高系统的异步处理能力、解耦性和可扩展性。

事件服务包含两个部分:事件服务器和事件。

  • 事件服务器用于接收和分发事件,其内部维护一个事件队列用于存储待处理事件和一个事件列表用于存储已创建事件。
  • 事件需要创建到事件服务器并提供一个回调函数。

当事件发生时,事件服务器会将事件插入到事件队列中进行缓存。事件服务器会周期性地从事件队列中取出事件进行分发,找到对应的事件回调进行事件处理。

事件服务操作接口
接口 描述
mr_event_server_find 查找事件服务器
mr_event_server_add 添加事件服务器
mr_event_server_remove 移除事件服务器
mr_event_server_handle 事件服务器处理
mr_event_create 创建事件
mr_event_delete 移除事件
mr_event_notify 通知事件发生
mr_event_trigger 触发事件
事件服务使用示例:
/* 定义事件 */
#define EVENT1                          1
#define EVENT2                          2
#define EVENT3                          3
/* 定义事件服务器 */
struct mr_event_server event_server;
mr_err_t event1_cb(mr_event_server_t server, void *args)
{
    printf("event1_cb\r\n");
    
    /* 通知事件服务器事件2发生 */
    mr_event_notify(EVENT2, server);
    return MR_ERR_OK;
}
mr_err_t event2_cb(mr_event_server_t server, void *args)
{
    printf("event2_cb\r\n");
    /* 通知事件服务器事件3发生 */
    mr_event_notify(EVENT3, server)
    return MR_ERR_OK;
}
mr_err_t event3_cb(mr_event_server_t server, void *args)
{
    printf("event3_cb\r\n");
    return MR_ERR_OK;
}
int main(void)
{
    /* 添加事件服务器到内核容器 */
    mr_event_server_add(&event_server, "server", 4);
    
    /* 创建事件到服务器 */
    mr_event_create(EVENT1, event1_cb, MR_NULL, &event_server);
    mr_event_create(EVENT2, event2_cb, MR_NULL, &event_server);
    mr_event_create(EVENT3, event3_cb, MR_NULL, &event_server);
    
    /* 通知事件服务器事件1发生 */
    mr_event_notify(EVENT1, &event_server);
    
    while (1)
    {
        /* 事件服务器处理 */
        mr_event_server_handle(&event_server);
    }
}

现象:

event1_cb
event2_cb
event3_cb

软件定时器服务

软件定时器是一种在软件层面实现计时功能的机制,通过软件定时器,可以在特定时间点或时间间隔触发特定的事件。软件定时器常用于实现周期性任务、超时处理、定时器中断等功能。

软件定时器包含两个主要组件:定时服务器和定时器。

  • 定时服务器用于时间管理和定时器处理。
  • 定时器用于处理特定的超时处理,它需要注册到定时服务器并提供一个回调函数。

软件定时器服务操作接口

接口 描述
mr_soft_timer_server_find 查找定时服务器
mr_soft_timer_server_add 添加定时服务器
mr_soft_timer_server_remove 移除定时服务器
mr_soft_timer_server_update 定时服务器时基信号更新
mr_soft_timer_server_handle 定时服务器处理
mr_soft_timer_add 添加定时器
mr_soft_timer_remove 移除定时器
mr_soft_timer_start 启动定时器
mr_soft_timer_stop 暂停定时器
mr_soft_timer_add_then_start 添加定时器并启动

软件定时器服务使用示例:

/* 定义定时服务器和定时器 */
struct mr_soft_timer_server server;
struct mr_soft_timer timer1, timer2, timer3;
mr_err_t timer1_callback(mr_soft_timer timer, void *args)
{
    printf("timer1_callback\r\n");
    return MR_ERR_OK;
}
mr_err_t timer2_callback(mr_soft_timer timer, void *args)
{
    printf("timer2_callback\r\n");
    return MR_ERR_OK;
}
mr_err_t timer3_callback(mr_soft_timer timer, void *args)
{
    printf("timer3_callback\r\n");
    mr_soft_timer_stop(timer);
    return MR_ERR_OK;
}
int main(void)
{
    /* 添加定时服务器 */
    mr_soft_timer_server_add(&server, "soft-timer");
    /* 添加定时器并启动 */
    mr_soft_timer_add_then_start(&timer1, 5, timer1_callback, MR_NULL, &server);
    mr_soft_timer_add_then_start(&timer2, 10, timer2_callback, MR_NULL, &server);
    mr_soft_timer_add_then_start(&timer3, 15, timer3_callback, MR_NULL, &server);
    while (1)
    {
        /* 更新定时服务器时钟 */
        mr_soft_timer_server_update(&server, 1);
        
        /* 定时服务器处理(放在哪里,回调就将在哪里被调用) */
        mr_soft_timer_server_handle(&server);
    }
}

代码目录

mr-library 的代码目录结构如下表所示:

名称 描述
bsp 板级支持包
device 设备文件
document 文档
driver 驱动文件
include 库头文件
module 组件
package 软件包
src 库源文件
  • 内核层: mr-library 的核心部分,实现对象管理,设备控制,服务接口等。
  • 设备层: 提供统一的设备接口,将设备接入到内核中。
  • 驱动层: 为设备提供底层硬件驱动,当硬件更换时仅需修改驱动层。
  • 组件层: 通过框架提供的API实现不同的功能。包括但不限于虚拟文件系统、通用传感器模块、网络框架等。
  • 软件包: 可独立使用,无依赖的软件包。

开源地址:https://gitee.com/MacRsh/mr-library

声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

目录
相关文章
|
7月前
|
调度
【嵌入式开源库】timeslice的使用,完全解耦的时间片轮询框架构(二)
【嵌入式开源库】timeslice的使用,完全解耦的时间片轮询框架构
170 0
|
7月前
|
存储
嵌入式微处理器的系统架构中指令系统
嵌入式微处理器的系统架构中指令系统
74 0
|
3月前
|
Java API 开发者
【Java模块化新飞跃】JDK 22模块化增强:构建更灵活、更可维护的应用架构!
【9月更文挑战第9天】JDK 22的模块化增强为开发者构建更灵活、更可维护的应用架构提供了强有力的支持。通过模块化设计、精细的依赖管理和丰富的工具支持,开发者可以更加高效地开发和管理应用,提高应用的性能和可维护性。
102 10
|
3月前
|
设计模式 存储 人工智能
深度解析Unity游戏开发:从零构建可扩展与可维护的游戏架构,让你的游戏项目在模块化设计、脚本对象运用及状态模式处理中焕发新生,实现高效迭代与团队协作的完美平衡之路
【9月更文挑战第1天】游戏开发中的架构设计是项目成功的关键。良好的架构能提升开发效率并确保项目的长期可维护性和可扩展性。在使用Unity引擎时,合理的架构尤为重要。本文探讨了如何在Unity中实现可扩展且易维护的游戏架构,包括模块化设计、使用脚本对象管理数据、应用设计模式(如状态模式)及采用MVC/MVVM架构模式。通过这些方法,可以显著提高开发效率和游戏质量。例如,模块化设计将游戏拆分为独立模块。
224 3
|
3月前
|
编解码 Linux 开发工具
Linux平台x86_64|aarch64架构RTMP推送|轻量级RTSP服务模块集成说明
支持x64_64架构、aarch64架构(需要glibc-2.21及以上版本的Linux系统, 需要libX11.so.6, 需要GLib–2.0, 需安装 libstdc++.so.6.0.21、GLIBCXX_3.4.21、 CXXABI_1.3.9)。
|
4月前
|
编解码 Linux 数据安全/隐私保护
Linux平台x86_64|aarch64架构如何实现轻量级RTSP服务
为满足在Linux平台(x86_64与aarch64架构)上实现轻量级RTSP服务的需求,我们开发了一套解决方案。该方案通过调用`start_rtsp_server()`函数启动RTSP服务,并设置端口号及认证信息。支持AAC音频和H.264视频编码,可推送纯音频、纯视频或音视频流。此外,还支持X11屏幕采集、部分V4L2摄像头采集、帧率/GOP/码率调整、摄像头设备选择与预览等功能。对于音频采集,支持alsa-lib和libpulse接口。整体设计旨在提供150-400ms的低延迟体验,适用于多种应用场景。
|
4月前
|
移动开发 前端开发 weex
Android项目架构设计问题之模块化后调用式通信如何解决
Android项目架构设计问题之模块化后调用式通信如何解决
23 0
|
5月前
|
消息中间件 API 数据库
在微服务架构中,每个服务通常都是一个独立运行、独立部署、独立扩展的组件,它们之间通过轻量级的通信机制(如HTTP/RESTful API、gRPC等)进行通信。
在微服务架构中,每个服务通常都是一个独立运行、独立部署、独立扩展的组件,它们之间通过轻量级的通信机制(如HTTP/RESTful API、gRPC等)进行通信。
|
5月前
|
安全 API 调度
「架构」嵌入式鸿蒙架构
**鸿蒙嵌入式架构概览** HarmonyOS,华为的分布式操作系统,应用于嵌入式设备,以微内核、跨平台能力和组件化设计著称。核心功能包括设备统一管理、分布式软总线及安全机制。特点:低时延、高安全性、易开发。优点在于灵活性、扩展性和性能,但需构建生态、增加开发者资源和争取市场认可。采用模块化设计,支持多语言开发,利用分布式通信协议和硬件抽象层,通过Huawei AppGallery推动应用生态。
216 0
|
6月前
|
安全 Java Maven
Spring Boot项目的模块化设计与架构
Spring Boot项目的模块化设计与架构