C++-模板基础

简介: C++-模板基础

1. 泛型编程


大家在学习过程中一定写过swap函数吧,那么swap函数的可以写成很多种形式,因为形参的类型可以是任意类型,那么我们如果想用多种swap函数的话,就意味着我们必须写多个swap函数吗?不是的,C++为了解决这个问题,引入了模板这个概念。


如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{
  int temp = left;
  left = right;
  right = temp;
}
void Swap(double& left, double& right)
{
  double temp = left;
  left = right;
  right = temp;
}
void Swap(char& left, char& right)
{
  char temp = left;
  left = right;
  right = temp;
}
......

通过比较这几个swap函数,我们可以发现,这些函数的内容是一样的,唯一的区别就是参数。


使用函数重载虽然可以实现,但是有一下几个不好的地方:

1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数

2. 代码的可维护性比较低,一个出错可能所有的重载均出错

那能否 告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码 呢?

如果在 C++ 中,也能够存在这样一个 模具 ,通过给这个模具中 填充不同材料 ( 类型 ) ,来 获得不同材料的铸件

( 即生成具体类型的代码) ,那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此凉。

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

34e3341eb23648af92c4ea9aff81e28d.png

2. 函数模板  


2.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定 类型版本。


2.2 函数模板格式

template

返回值类型 函数名(参数列表){}

template<typename T>
void Swap(T& left, T& right)
{
  T temp = left;
  left = right;
  right = temp;
}
int main()
{
  int a1 = 10;
  int a2 = 20;
  char b = 'c';
  char c = 'b';
  Swap(a1, a2);
  Swap(b, c);
  cout << a1 <<" " << a2 <<" "<< b <<" " << c << endl;
  return 0;
}

82597d6fb5ff45c7bd5944cdceb011af.png

通过上面这段代码可以发现,无论是char类型还是int类型,或者是其他类型,只需要一个swap的函数模板,就能够完成交换。


注意: typename 是 用来定义模板参数 关键字 , 也可以使用 class( 切记:不能使用 struct 代替 class)

2.3 函数模板的原理

那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生 产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模 板就是将本来应该我们做的重复的事情交给了编译器

304a3244c23543aeabe3e402828ac9ba.png

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供 调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然 后产生一份专门处理double类型的代码,对于字符类型也是如此。


2.4 函数模板的实例化

用不同类型的参数使用函数模板时 ,称为函数模板的 实例化 。模板参数实例化分为: 隐式实例化和显式实例 化 。

1. 隐式实例化:让编译器根据实参推演模板参数的实际类型

06c30068f3ee4df1a4891d183b9a3be9.png

注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅


此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化

显式实例化:在函数名后加<>来指定模板参数的实际类型

template<class T>
T Add(const T& left, const T& right)
{
  return left + right;
}
int main()
{
  int a1 = 10, a2 = 20;
  double d1 = 10.0, d2 = 20.0;
  int d3= Add<int>(d1, d2);
  cout << d3 << endl;
  return 0;
}

9319b51104cb41698f2a3507314c3f09.png

如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。

2.5 模板参数的匹配原则

1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数。

// 专门处理int的加法函数
int Add(int left, int right)
{
  return left + right;
}
// 通用加法函数
template<class T>
T Add(T left, T right)
{
  return left + right;
}
void Test()
{
  Add(1, 2); // 与非模板函数匹配,编译器不需要特化
  Add<int>(1, 2); // 调用编译器特化的Add版本
}

2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模 板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。

// 专门处理int的加法函数
int Add(int left, int right)
{
  return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
  return left + right;
}
void Test()
{
  Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
  Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}

3. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换


3. 类模板


3.1 类模板的定义格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
 // 类内成员定义
};
// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
  Vector(size_t capacity = 10)
  : _pData(new T[capacity])
  , _size(0)
  , _capacity(capacity)
  {}
  // 使用析构函数演示:在类中声明,在类外定义。
  ~Vector();
  void PushBack(const T& data);
  void PopBack();
  // ...
  size_t Size() { return _size; }
  T& operator[](size_t pos)
  {
  assert(pos < _size);
  return _pData[pos];
  }
private:
  T* _pData;
  size_t _size;
  size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
  if (_pData)
  delete[] _pData;
  _size = _capacity = 0;
}

3.2 类模板的实例化

类模板实例化与函数模板实例化不同, 类模板实例化需要在类模板名字后跟 <> ,然后将实例化的类型放在 <> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类.

// Vector 类名, Vector 才是类型

Vector < int > s1 ;

Vector < double > s2 ;

总结:


普通类:类名->类型;


类模板:类名+数据类型->类型;


今天的分享到这里就结束了,感谢大家的阅读!

相关文章
|
3月前
|
存储 算法 C++
C++ STL 初探:打开标准模板库的大门
C++ STL 初探:打开标准模板库的大门
127 10
|
5月前
|
编译器 C++
【C++】——初识模板
【C++】——初识模板
【C++】——初识模板
|
6月前
|
程序员 C++
C++模板元编程入门
【7月更文挑战第9天】C++模板元编程是一项强大而复杂的技术,它允许程序员在编译时进行复杂的计算和操作,从而提高了程序的性能和灵活性。然而,模板元编程的复杂性和抽象性也使其难以掌握和应用。通过本文的介绍,希望能够帮助你初步了解C++模板元编程的基本概念和技术要点,为进一步深入学习和应用打下坚实的基础。在实际开发中,合理运用模板元编程技术,可以极大地提升程序的性能和可维护性。
|
2月前
|
安全 编译器 C++
【C++11】可变模板参数详解
本文详细介绍了C++11引入的可变模板参数,这是一种允许模板接受任意数量和类型参数的强大工具。文章从基本概念入手,讲解了可变模板参数的语法、参数包的展开方法,以及如何结合递归调用、折叠表达式等技术实现高效编程。通过具体示例,如打印任意数量参数、类型安全的`printf`替代方案等,展示了其在实际开发中的应用。最后,文章讨论了性能优化策略和常见问题,帮助读者更好地理解和使用这一高级C++特性。
71 4
|
2月前
|
算法 编译器 C++
【C++】模板详细讲解(含反向迭代器)
C++模板是泛型编程的核心,允许编写与类型无关的代码,提高代码复用性和灵活性。模板分为函数模板和类模板,支持隐式和显式实例化,以及特化(全特化和偏特化)。C++标准库广泛使用模板,如容器、迭代器、算法和函数对象等,以支持高效、灵活的编程。反向迭代器通过对正向迭代器的封装,实现了逆序遍历的功能。
39 3
|
2月前
|
编译器 C++
【c++】模板详解(1)
本文介绍了C++中的模板概念,包括函数模板和类模板,强调了模板作为泛型编程基础的重要性。函数模板允许创建类型无关的函数,类模板则能根据不同的类型生成不同的类。文章通过具体示例详细解释了模板的定义、实例化及匹配原则,帮助读者理解模板机制,为学习STL打下基础。
35 0
|
3月前
|
编译器 程序员 C++
【C++打怪之路Lv7】-- 模板初阶
【C++打怪之路Lv7】-- 模板初阶
26 1
|
3月前
|
存储 编译器 C++
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
【C++篇】引领C++模板初体验:泛型编程的力量与妙用
58 9
|
3月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
76 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
3月前
|
算法 编译器 C++
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
【C++篇】领略模板编程的进阶之美:参数巧思与编译的智慧
102 2