1. 泛型编程
大家在学习过程中一定写过swap函数吧,那么swap函数的可以写成很多种形式,因为形参的类型可以是任意类型,那么我们如果想用多种swap函数的话,就意味着我们必须写多个swap函数吗?不是的,C++为了解决这个问题,引入了模板这个概念。
如何实现一个通用的交换函数呢?
void Swap(int& left, int& right) { int temp = left; left = right; right = temp; } void Swap(double& left, double& right) { double temp = left; left = right; right = temp; } void Swap(char& left, char& right) { char temp = left; left = right; right = temp; } ......
通过比较这几个swap函数,我们可以发现,这些函数的内容是一样的,唯一的区别就是参数。
使用函数重载虽然可以实现,但是有一下几个不好的地方:
1. 重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
2. 代码的可维护性比较低,一个出错可能所有的重载均出错
那能否 告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码 呢?
如果在 C++ 中,也能够存在这样一个 模具 ,通过给这个模具中 填充不同材料 ( 类型 ) ,来 获得不同材料的铸件
( 即生成具体类型的代码) ,那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。
2. 函数模板
2.1 函数模板概念
函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定 类型版本。
2.2 函数模板格式
template
返回值类型 函数名(参数列表){}
template<typename T> void Swap(T& left, T& right) { T temp = left; left = right; right = temp; } int main() { int a1 = 10; int a2 = 20; char b = 'c'; char c = 'b'; Swap(a1, a2); Swap(b, c); cout << a1 <<" " << a2 <<" "<< b <<" " << c << endl; return 0; }
通过上面这段代码可以发现,无论是char类型还是int类型,或者是其他类型,只需要一个swap的函数模板,就能够完成交换。
注意: typename 是 用来定义模板参数 关键字 , 也可以使用 class( 切记:不能使用 struct 代替 class)
2.3 函数模板的原理
那么如何解决上面的问题呢?大家都知道,瓦特改良蒸汽机,人类开始了工业革命,解放了生产力。机器生 产淘汰掉了很多手工产品。本质是什么,重复的工作交给了机器去完成。有人给出了论调:懒人创造世界。
函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模 板就是将本来应该我们做的重复的事情交给了编译器
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供 调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然 后产生一份专门处理double类型的代码,对于字符类型也是如此。
2.4 函数模板的实例化
用不同类型的参数使用函数模板时 ,称为函数模板的 实例化 。模板参数实例化分为: 隐式实例化和显式实例 化 。
1. 隐式实例化:让编译器根据实参推演模板参数的实际类型
注意:在模板中,编译器一般不会进行类型转换操作,因为一旦转化出问题,编译器就需要背黑锅
此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化
显式实例化:在函数名后加<>来指定模板参数的实际类型
template<class T> T Add(const T& left, const T& right) { return left + right; } int main() { int a1 = 10, a2 = 20; double d1 = 10.0, d2 = 20.0; int d3= Add<int>(d1, d2); cout << d3 << endl; return 0; }
如果类型不匹配,编译器会尝试进行隐式类型转换,如果无法转换成功编译器将会报错。
2.5 模板参数的匹配原则
1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数。
// 专门处理int的加法函数 int Add(int left, int right) { return left + right; } // 通用加法函数 template<class T> T Add(T left, T right) { return left + right; } void Test() { Add(1, 2); // 与非模板函数匹配,编译器不需要特化 Add<int>(1, 2); // 调用编译器特化的Add版本 }
2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模 板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。
// 专门处理int的加法函数 int Add(int left, int right) { return left + right; } // 通用加法函数 template<class T1, class T2> T1 Add(T1 left, T2 right) { return left + right; } void Test() { Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化 Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数 }
3. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换
3. 类模板
3.1 类模板的定义格式
template<class T1, class T2, ..., class Tn> class 类模板名 { // 类内成员定义 };
// 动态顺序表 // 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具 template<class T> class Vector { public: Vector(size_t capacity = 10) : _pData(new T[capacity]) , _size(0) , _capacity(capacity) {} // 使用析构函数演示:在类中声明,在类外定义。 ~Vector(); void PushBack(const T& data); void PopBack(); // ... size_t Size() { return _size; } T& operator[](size_t pos) { assert(pos < _size); return _pData[pos]; } private: T* _pData; size_t _size; size_t _capacity; }; // 注意:类模板中函数放在类外进行定义时,需要加模板参数列表 template <class T> Vector<T>::~Vector() { if (_pData) delete[] _pData; _size = _capacity = 0; }
3.2 类模板的实例化
类模板实例化与函数模板实例化不同, 类模板实例化需要在类模板名字后跟 <> ,然后将实例化的类型放在 <> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类.
// Vector 类名, Vector 才是类型
Vector < int > s1 ;
Vector < double > s2 ;
总结:
普通类:类名->类型;
类模板:类名+数据类型->类型;
今天的分享到这里就结束了,感谢大家的阅读!