MYSQL分页limit速度太慢优化方法

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MYSQL分页limit速度太慢优化方法

在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦。

当一个表数据有几百万的数据的时候成了问题!

如 * from table limit 0,10 这个没有问题 当 limit 200000,10 的时候数据读取就很慢,可以按照一下方法解决

第一页会很快

PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇”EfficientPagination Using MySQL”的报告

limit10000,20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行,问题就在这里。

LIMIT 451350 , 30 扫描了45万多行,怪不得慢的都堵死了。

但是

limit 30 这样的语句仅仅扫描30行。

那么如果我们之前记录了最大ID,就可以在这里做文章

举个例子

日常分页SQL语句

select id,name,content from users order by id asc limit 100000,20

扫描100020行

如果记录了上次的最大ID

select id,name,content from users where id>100073 order by id asc limit 20

扫描20行。

总数据有500万左右

以下例子 当时候 select * from wl_tagindex where byname=’f’ order by id limit 300000,10 执行时间是 3.21s

优化后:

select * from (

select id from wl_tagindex

where byname=’f’ order by id limit 300000,10

) a

left join wl_tagindex b on a.id=b.id

执行时间为 0.11s 速度明显提升

这里需要说明的是 我这里用到的字段是 byname ,id 需要把这两个字段做复合索引,否则的话效果提升不明显

总结

当一个数据库表过于庞大,LIMIT offset, length中的offset值过大,则SQL查询语句会非常缓慢,你需增加order by,并且order by字段需要建立索引。

如果使用子查询去优化LIMIT的话,则子查询必须是连续的,某种意义来讲,子查询不应该有where条件,where会过滤数据,使数据失去连续性。

如果你查询的记录比较大,并且数据传输量比较大,比如包含了text类型的field,则可以通过建立子查询。

SELECT id,title,content FROM items WHERE id IN (SELECT id FROM items ORDER BY id limit 900000, 10);

如果limit语句的offset较大,你可以通过传递pk键值来减小offset = 0,这个主键最好是int类型并且auto_increment

SELECT * FROM users WHERE uid > 456891 ORDER BY uid LIMIT 0, 10;

这条语句,大意如下:

SELECT * FROM users WHERE uid >= (SELECT uid FROM users ORDER BY uid limit 895682, 1) limit 0, 10;

如果limit的offset值过大,用户也会翻页疲劳,你可以设置一个offset最大的,超过了可以另行处理,一般连续翻页过大,用户体验很差,则应该提供更优的用户体验给用户。

limit 分页优化方法

1.子查询优化法

先找出第一条数据,然后大于等于这条数据的id就是要获取的数据

缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性

实验下

mysql> set profi=1;

Query OK, 0 rows affected (0.00 sec)

mysql> select count(*) from Member;

+———-+

| count(*) |

+———-+

| 169566 |

+———-+

1 row in set (0.00 sec)

mysql> pager grep !~-

PAGER set to ‘grep !~-‘

mysql> select * from Member limit 10, 100;

100 rows in set (0.00 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;

100 rows in set (0.00 sec)

mysql> select * from Member limit 1000, 100;

100 rows in set (0.01 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;

100 rows in set (0.00 sec)

mysql> select * from Member limit 100000, 100;

100 rows in set (0.10 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;

100 rows in set (0.02 sec)

mysql> nopager

PAGER set to stdout

mysql> show profilesG

*************************** 1. row ***************************

Query_ID: 1

Duration: 0.00003300

Query: select count(*) from Member

*************************** 2. row ***************************

Query_ID: 2

Duration: 0.00167000

Query: select * from Member limit 10, 100

*************************** 3. row ***************************

Query_ID: 3

Duration: 0.00112400

Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100

*************************** 4. row ***************************

Query_ID: 4

Duration: 0.00263200

Query: select * from Member limit 1000, 100

*************************** 5. row ***************************

Query_ID: 5

Duration: 0.00134000

Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100

*************************** 6. row ***************************

Query_ID: 6

Duration: 0.09956700

Query: select * from Member limit 100000, 100

*************************** 7. row ***************************

Query_ID: 7

Duration: 0.02447700

Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100

从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。

2.倒排表优化法

倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据

缺点:只适合数据数固定的情况,数据不能删除,维护页表困难

3.反向查找优化法

当偏移超过一半记录数的时候,先用排序,这样偏移就反转了

缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数

,偏移大于数据的一半

引用

limit偏移算法:

正向查找: (当前页 - 1) * 页长度

反向查找: 总记录 - 当前页 * 页长度

做下实验,看看性能如何

总记录数:1,628,775

每页记录数: 40

总页数:1,628,775 / 40 = 40720

中间页数:40720 / 2 = 20360

第21000页

正向查找SQL:

Sql代码

SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40

时间:1.8696 秒

反向查找sql:

Sql代码

SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40

时间:1.8336 秒

第30000页

正向查找SQL:

Sql代码

1.SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40

SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40

时间:2.6493 秒

反向查找sql:

Sql代码

1.SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40

SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40

时间:1.0035 秒

注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。

4.limit限制优化法

把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的

5.只查索引法

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
11天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
36 3
|
16天前
|
SQL NoSQL 关系型数据库
2024Mysql And Redis基础与进阶操作系列(5)作者——LJS[含MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页等详解步骤及常见报错问题所对应的解决方法]
MySQL DQL基本查询:select;简单、排序、分组、聚合、分组、分页、INSERT INTO SELECT / FROM查询结合精例等详解步骤及常见报错问题所对应的解决方法
|
13天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
37 1
|
15天前
|
关系型数据库 MySQL
Mysql 中日期比较大小的方法有哪些?
在 MySQL 中,可以通过多种方法比较日期的大小,包括使用比较运算符、NOW() 函数、DATEDIFF 函数和 DATE 函数。这些方法可以帮助你筛选出特定日期范围内的记录,确保日期格式一致以避免错误。
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
77 1
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
8天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
22 4
|
6天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
19 1
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引