MYSQL分页limit速度太慢优化方法

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: MYSQL分页limit速度太慢优化方法

在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦。

当一个表数据有几百万的数据的时候成了问题!

如 * from table limit 0,10 这个没有问题 当 limit 200000,10 的时候数据读取就很慢,可以按照一下方法解决

第一页会很快

PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇”EfficientPagination Using MySQL”的报告

limit10000,20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行,问题就在这里。

LIMIT 451350 , 30 扫描了45万多行,怪不得慢的都堵死了。

但是

limit 30 这样的语句仅仅扫描30行。

那么如果我们之前记录了最大ID,就可以在这里做文章

举个例子

日常分页SQL语句

select id,name,content from users order by id asc limit 100000,20

扫描100020行

如果记录了上次的最大ID

select id,name,content from users where id>100073 order by id asc limit 20

扫描20行。

总数据有500万左右

以下例子 当时候 select * from wl_tagindex where byname=’f’ order by id limit 300000,10 执行时间是 3.21s

优化后:

select * from (

select id from wl_tagindex

where byname=’f’ order by id limit 300000,10

) a

left join wl_tagindex b on a.id=b.id

执行时间为 0.11s 速度明显提升

这里需要说明的是 我这里用到的字段是 byname ,id 需要把这两个字段做复合索引,否则的话效果提升不明显

总结

当一个数据库表过于庞大,LIMIT offset, length中的offset值过大,则SQL查询语句会非常缓慢,你需增加order by,并且order by字段需要建立索引。

如果使用子查询去优化LIMIT的话,则子查询必须是连续的,某种意义来讲,子查询不应该有where条件,where会过滤数据,使数据失去连续性。

如果你查询的记录比较大,并且数据传输量比较大,比如包含了text类型的field,则可以通过建立子查询。

SELECT id,title,content FROM items WHERE id IN (SELECT id FROM items ORDER BY id limit 900000, 10);

如果limit语句的offset较大,你可以通过传递pk键值来减小offset = 0,这个主键最好是int类型并且auto_increment

SELECT * FROM users WHERE uid > 456891 ORDER BY uid LIMIT 0, 10;

这条语句,大意如下:

SELECT * FROM users WHERE uid >= (SELECT uid FROM users ORDER BY uid limit 895682, 1) limit 0, 10;

如果limit的offset值过大,用户也会翻页疲劳,你可以设置一个offset最大的,超过了可以另行处理,一般连续翻页过大,用户体验很差,则应该提供更优的用户体验给用户。

limit 分页优化方法

1.子查询优化法

先找出第一条数据,然后大于等于这条数据的id就是要获取的数据

缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性

实验下

mysql> set profi=1;

Query OK, 0 rows affected (0.00 sec)

mysql> select count(*) from Member;

+———-+

| count(*) |

+———-+

| 169566 |

+———-+

1 row in set (0.00 sec)

mysql> pager grep !~-

PAGER set to ‘grep !~-‘

mysql> select * from Member limit 10, 100;

100 rows in set (0.00 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;

100 rows in set (0.00 sec)

mysql> select * from Member limit 1000, 100;

100 rows in set (0.01 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;

100 rows in set (0.00 sec)

mysql> select * from Member limit 100000, 100;

100 rows in set (0.10 sec)

mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;

100 rows in set (0.02 sec)

mysql> nopager

PAGER set to stdout

mysql> show profilesG

*************************** 1. row ***************************

Query_ID: 1

Duration: 0.00003300

Query: select count(*) from Member

*************************** 2. row ***************************

Query_ID: 2

Duration: 0.00167000

Query: select * from Member limit 10, 100

*************************** 3. row ***************************

Query_ID: 3

Duration: 0.00112400

Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100

*************************** 4. row ***************************

Query_ID: 4

Duration: 0.00263200

Query: select * from Member limit 1000, 100

*************************** 5. row ***************************

Query_ID: 5

Duration: 0.00134000

Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100

*************************** 6. row ***************************

Query_ID: 6

Duration: 0.09956700

Query: select * from Member limit 100000, 100

*************************** 7. row ***************************

Query_ID: 7

Duration: 0.02447700

Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100

从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。

2.倒排表优化法

倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据

缺点:只适合数据数固定的情况,数据不能删除,维护页表困难

3.反向查找优化法

当偏移超过一半记录数的时候,先用排序,这样偏移就反转了

缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数

,偏移大于数据的一半

引用

limit偏移算法:

正向查找: (当前页 - 1) * 页长度

反向查找: 总记录 - 当前页 * 页长度

做下实验,看看性能如何

总记录数:1,628,775

每页记录数: 40

总页数:1,628,775 / 40 = 40720

中间页数:40720 / 2 = 20360

第21000页

正向查找SQL:

Sql代码

SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40

时间:1.8696 秒

反向查找sql:

Sql代码

SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40

时间:1.8336 秒

第30000页

正向查找SQL:

Sql代码

1.SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40

SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40

时间:2.6493 秒

反向查找sql:

Sql代码

1.SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40

SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40

时间:1.0035 秒

注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。

4.limit限制优化法

把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的

5.只查索引法

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
26天前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
27天前
|
SQL 关系型数据库 MySQL
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
105 15
MySQL底层概述—7.优化原则及慢查询
|
12天前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
32 9
|
18天前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
66 9
|
17天前
|
关系型数据库 MySQL
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
32 3
|
20天前
|
SQL 关系型数据库 MySQL
Python中使用MySQL模糊查询的方法
本文介绍了两种使用Python进行MySQL模糊查询的方法:一是使用`pymysql`库,二是使用`mysql-connector-python`库。通过这两种方法,可以连接MySQL数据库并执行模糊查询。具体步骤包括安装库、配置数据库连接参数、编写SQL查询语句以及处理查询结果。文中详细展示了代码示例,并提供了注意事项,如替换数据库连接信息、正确使用通配符和关闭数据库连接等。确保在实际应用中注意SQL注入风险,使用参数化查询以保障安全性。
|
2月前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
1月前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
167 42
|
24天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
124 25
|
11天前
|
监控 关系型数据库 MySQL
云数据库:从零到一,构建高可用MySQL集群
在互联网时代,数据成为企业核心资产,传统单机数据库难以满足高并发、高可用需求。云数据库通过弹性扩展、分布式架构等优势解决了这些问题,但也面临数据安全和性能优化挑战。本文介绍了如何从零开始构建高可用MySQL集群,涵盖选择云服务提供商、创建实例、配置高可用架构、数据备份恢复及性能优化等内容,并通过电商平台案例展示了具体应用。