一次非常有意思的SQL优化经历:从30248.271s到0.001s

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 一次非常有意思的SQL优化经历:从30248.271s到0.001s

场景

用的数据库是mysql5.6,下面简单的介绍下场景

课程表

create table Course(
c_id int PRIMARY KEY,
name varchar(10)
)


数据100条

学生表:

create table Student(
id int PRIMARY KEY,
name varchar(10)
)


数据70000条

学生成绩表SC

CREATE table SC(
 sc_id int PRIMARY KEY,
 s_id int,
 c_id int,
 score int
)

数据70w条

查询目的:

查找语文考100分的考生

查询语句:

select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )


执行时间:30248.271s

为什么这么慢?先来查看下查询计划:

EXPLAIN

select s.* from Student s where s.s_id in (select s_id from SC sc where sc.c_id = 0 and sc.score = 100 )


 

发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。

先给sc表的c_id和score建个索引

CREATE index sc_c_id_index on SC(c_id);

CREATE index sc_score_index on SC(score);


再次执行上述查询语句,时间为: 1.054s

快了3w多倍,大大缩短了查询时间,看来索引能极大程度的提高查询效率,看来建索引很有必要,很多时候都忘记建索引了,数据量小的的时候压根没感觉,这优化感觉挺爽。

但是1s的时间还是太长了,还能进行优化吗,仔细看执行计划:

 

查看优化后的sql:

SELECT
 `YSB`.`s`.`s_id` AS `s_id`,
 `YSB`.`s`.`name` AS `name`
FROM
 `YSB`.`Student` `s`
WHERE
 < in_optimizer > (
 `YSB`.`s`.`s_id` ,< EXISTS > (
 SELECT
 1
 FROM
 `YSB`.`SC` `sc`
 WHERE
 (
 (`YSB`.`sc`.`c_id` = 0)
 AND (`YSB`.`sc`.`score` = 100)
 AND (
 < CACHE > (`YSB`.`s`.`s_id`) = `YSB`.`sc`.`s_id`
 )
 )
 )
 )


补充:这里有网友问怎么查看优化后的语句

方法如下:

在命令窗口执行

 

 

有type=all

按照我之前的想法,该sql的执行的顺序应该是先执行子查询

select s_id from SC sc where sc.c_id = 0 and sc.score = 100


耗时:0.001s

得到如下结果:

 

然后再执行

select s.* from Student s where s.s_id in(7,29,5000)


耗时:0.001s

这样就是相当快了啊,Mysql竟然不是先执行里层的查询,而是将sql优化成了exists子句,并出现了EPENDENT SUBQUERY,

mysql是先执行外层查询,再执行里层的查询,这样就要循环70007*11=770077次。

那么改用连接查询呢?

SELECT s.* from

Student s

INNER JOIN SC sc

on sc.s_id = s.s_id

where sc.c_id=0 and sc.score=100


这里为了重新分析连接查询的情况,先暂时删除索引sc_c_id_index,sc_score_index

执行时间是:0.057s

效率有所提高,看看执行计划:

 

这里有连表的情况出现,我猜想是不是要给sc表的s_id建立个索引

CREATE index sc_s_id_index on SC(s_id);

show index from SC

 

在执行连接查询

时间: 1.076s,竟然时间还变长了,什么原因?查看执行计划:

 

优化后的查询语句为:

SELECT

`YSB`.`s`.`s_id` AS `s_id`,

`YSB`.`s`.`name` AS `name`

FROM

`YSB`.`Student` `s`

JOIN `YSB`.`SC` `sc`

WHERE

(

(

`YSB`.`sc`.`s_id` = `YSB`.`s`.`s_id`

)

AND (`YSB`.`sc`.`score` = 100)

AND (`YSB`.`sc`.`c_id` = 0)

)


貌似是先做的连接查询,再执行的where过滤

回到前面的执行计划:

 

这里是先做的where过滤,再做连表,执行计划还不是固定的,那么我们先看下标准的sql执行顺序:

 

正常情况下是先join再where过滤,但是我们这里的情况,如果先join,将会有70w条数据发送join做操,因此先执行where

过滤是明智方案,现在为了排除mysql的查询优化,我自己写一条优化后的sql

SELECT

s.*

FROM

(

SELECT

*

FROM

SC sc

WHERE

sc.c_id = 0

AND sc.score = 100

) t

INNER JOIN Student s ON t.s_id = s.s_id


即先执行sc表的过滤,再进行表连接,执行时间为:0.054s

和之前没有建s_id索引的时间差不多

查看执行计划:

 

先提取sc再连表,这样效率就高多了,现在的问题是提取sc的时候出现了扫描表,那么现在可以明确需要建立相关索引

CREATE index sc_c_id_index on SC(c_id);

CREATE index sc_score_index on SC(score);


再执行查询:

SELECT
 s.*
FROM
 (
 SELECT
 *
 FROM
 SC sc
 WHERE
 sc.c_id = 0
 AND sc.score = 100
 ) t
INNER JOIN Student s ON t.s_id = s.s_id

执行时间为:0.001s,这个时间相当靠谱,快了50倍

执行计划:

 

我们会看到,先提取sc,再连表,都用到了索引。

那么再来执行下sql

SELECT s.* from 
Student s
INNER JOIN SC sc
on sc.s_id = s.s_id
where sc.c_id=0 and sc.score=100


执行时间0.001s

执行计划:

 

这里是mysql进行了查询语句优化,先执行了where过滤,再执行连接操作,且都用到了索引。

总结:

1.mysql嵌套子查询效率确实比较低

2.可以将其优化成连接查询

3.建立合适的索引

4.学会分析sql执行计划,mysql会对sql进行优化,所以分析执行计划很重要

由于时间问题,这篇文章先写到这里,后续再分享其他的sql优化经历。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
6天前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
14天前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
59 10
|
13天前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
27天前
|
SQL 资源调度 分布式计算
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。
|
1月前
|
SQL 监控 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
1月前
|
SQL 关系型数据库 PostgreSQL
遇到SQL 子查询性能很差?其实可以这样优化
遇到SQL 子查询性能很差?其实可以这样优化
87 2
|
1月前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
2月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
4月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
110 13
|
4月前
|
SQL
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。