你知道如何使用队列实现栈吗?(C语言)

简介: 你知道如何使用队列实现栈吗?(C语言)

这时一道非常经典的题型,因为栈和队列的性质是相反的,队列的数据是先入先出,栈的数据是后入先出,那么怎样使用两个队列实现栈呢?

21f600969cf746d49fd9fc19279e751d.png

这是题目的要求,如果使用C语言来实现的话,只能自己写一个队列了,这里我就不详细讲解了


代码如下:

typedef int QDataType;
typedef struct QueueNode
{
  struct QueueNode* next;
  QDataType data;
}QNode;
typedef struct Queue
{
  QNode* head;
  QNode* tail;
  int size;
}Que;
void QueueInit(Que* pq)
{
  assert(pq);
  pq->size = 0;
  pq->head = pq->tail = NULL;
}
void QueueDestroy(Que* pq)
{
  assert(pq);
  QNode* cur = pq->head;
  while (cur)
  {
  QNode* next = cur->next;
  free(cur);
  cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueuePush(Que* pq, QDataType x)
{
  assert(pq);
  QNode* tmp = (QNode*)malloc(sizeof(QNode));
  if (tmp == NULL)
  {
  perror("malloc fail");
  exit(-1);
  }
  tmp->data = x;
  tmp->next = NULL;
  if (pq->tail == NULL)
  {
  pq->head = pq->tail = tmp;
  }
  else
  {
  pq->tail->next = tmp;
  pq->tail = tmp;
  }
  pq->size++;
}
void QueuePop(Que* pq)
{
  assert(pq);
  assert(pq->head);
  if (pq->head->next == NULL)
  {
  free(pq->head);
  pq->head = pq->tail = NULL;
  }
  else
  {
  QNode* next = pq->head->next;
  free(pq->head);
  pq->head = next;
  }
  pq->size--;
}
QDataType QueueFront(Que* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->head->data;
}
QDataType QueueBack(Que* pq)
{
  assert(pq);
  assert(pq->head);
  return pq->tail->data;
}
bool QueueEmpty(Que* pq)
{
  assert(pq);
  return pq->head == NULL;
}
int QueueSize(Que* pq)
{
  assert(pq);
  return pq->size;
}


实现思路:

在实现这个栈之前我们需要有一个具体思路,栈是后进先出,队列是先进后出,那么在插入上是没有区别的,在删除上就需要将对列的尾部删除,那么如何实现对列的尾部删除呢?这就需要将其中一个对列nonempty的数据导入到另一个对列empty,直到nonempty只剩一个数据,然后头删即可。

c9778ea4c031422788892683c68f8da9.png


71ae3cf377394e109e8d434a6fb9c360.png

删除之后将nonempty和empty互换即可,必须保证其中一个队列为空。


1.栈的定义

题目要求是使用两个队列实现栈,那么就直接在栈的定义里面包含两个队列即可。

typedef struct 
{
    Que q1;
    Que q2;
} MyStack;

2.栈的初始化

为栈malloc一块空间,在使用QueueInit实现两个队列的初始化。

MyStack* myStackCreate() 
{
    MyStack* obj=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&obj->q1);
    QueueInit(&obj->q2);
    return obj;
}

3.数据入栈

数据入栈需要将数据push到不为空的那个队列,使用QueueEmpty判断队列是否为空,再使用QueuePush尾插数据。

void myStackPush(MyStack* obj, int x) 
{
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}

4.数据出栈

这个是题目的难点,创建两个变量分别为nonempty(非空队列)和empty(空队列),在使用if判断q1和q2哪个为空。使用while循环来实现遍历插入和删除,结束条件为nonempty内的数据为1,也就是队列的尾部数据,在循环内使用QueuePush将nonempty的头部数据插入到empty,每次插入之后要删除掉原节点。到这里还需要注意的是,题目要求返回这个数据,所以要创建一个变量返回这个数据,最后再删除掉,始终保存一个队列为空。

int myStackPop(MyStack* obj) 
{
    Que* empty=&obj->q1;
    Que* nonempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        nonempty=&obj->q1;
        empty=&obj->q2;
    }
    else
    {
        nonempty=&obj->q2;
        empty=&obj->q1;
    }
    //将前size-1个元素导入空队列
    while(QueueSize(nonempty)>1)
    {
        QueuePush(empty,QueueFront(nonempty));
        QueuePop(nonempty);
    }
    int ret= QueueFront(nonempty);
    QueuePop(nonempty);
    return ret;
}

5.取栈顶数据

栈顶数据也就是队列的尾部数据,使用QueueBack直接取nonempty的尾部数据即可。

int myStackTop(MyStack* obj) 
{
    if(!QueueEmpty(&obj->q1))
    {
        return  QueueBack(&obj->q1);
    }
    else
    {
        return  QueueBack(&obj->q2);
    }
}

6.判断栈是否为空

栈由两个队列组成,直接使用QueueEmpty判断两个队列是否为空即可,配合&&,必须两个都为空才返回true。

bool myStackEmpty(MyStack* obj) 
{
    return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}

7.毁栈销

使用QueueDestroy销毁掉两个队列,再free掉栈的空间即可。

void myStackFree(MyStack* obj) 
{
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);
    free(obj);
}

完整代码 :

typedef struct 
{
    Que q1;
    Que q2;
} MyStack;
MyStack* myStackCreate() 
{
    MyStack* obj=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&obj->q1);
    QueueInit(&obj->q2);
    return obj;
}
void myStackPush(MyStack* obj, int x) 
{
    if(!QueueEmpty(&obj->q1))
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}
int myStackPop(MyStack* obj) 
{
    Que* empty=&obj->q1;
    Que* nonempty=&obj->q2;
    if(!QueueEmpty(&obj->q1))
    {
        nonempty=&obj->q1;
        empty=&obj->q2;
    }
    else
    {
        nonempty=&obj->q2;
        empty=&obj->q1;
    }
    //将前size-1个元素导入空队列
    while(QueueSize(nonempty)>1)
    {
        QueuePush(empty,QueueFront(nonempty));
        QueuePop(nonempty);
    }
    int ret= QueueFront(nonempty);
    QueuePop(nonempty);
    return ret;
}
int myStackTop(MyStack* obj) 
{
    if(!QueueEmpty(&obj->q1))
    {
        return  QueueBack(&obj->q1);
    }
    else
    {
        return  QueueBack(&obj->q2);
    }
}
bool myStackEmpty(MyStack* obj) 
{
    return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);
}
void myStackFree(MyStack* obj) 
{
    QueueDestroy(&obj->q1);
    QueueDestroy(&obj->q2);
    free(obj);
}

今天的分享到这里就结束啦!谢谢老铁们的阅读,让我们下期再见。

相关文章
|
16天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9
|
1月前
|
C语言
数组栈的实现(C语言描述)
本文介绍了如何在C语言中使用数组来实现栈的数据结构,包括栈的创建、入栈、出栈、获取栈顶元素、检查栈是否为空、获取栈的大小以及销毁栈等操作,并提供了相应的函数实现。
27 1
|
2月前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
388 8
|
2月前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
369 3
|
5月前
|
C语言
C语言的栈帧
C语言的栈帧
|
5月前
|
C语言 C++
【数据结构】C语言实现:栈(Stack)与队列(Queue)
【数据结构】C语言实现:栈(Stack)与队列(Queue)
|
5月前
数据结构——栈(C语言版)
数据结构——栈(C语言版)
25 0
|
5月前
数据结构——队列(C语言版)
数据结构——队列(C语言版)
42 0
|
6月前
|
机器学习/深度学习 算法 编译器
【C语言】函数 ---- 函数的嵌套调用和链式访问、函数的声明和定义、变量的声明和定义、函数递归与迭代、递归时的栈溢出问题
【C语言】函数 ---- 函数的嵌套调用和链式访问、函数的声明和定义、变量的声明和定义、函数递归与迭代、递归时的栈溢出问题
122 0
|
1月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
34 3