网络原理-TCP/IP(1)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 网络原理-TCP/IP(1)

应用层

我们之前编写完了基本的java socket, 要知道,我们之前所写的所有代码都在应用层中,都是为了完成某项业务,如翻译等.关于应用层,后面会有专门的讲解,在此处先讲一下基础知识.

应用层对应着应用程序,是程序员打交道最多的一层,调用系统提供的网络api写出的代码都是应用层的.

应用层这里虽然有很多协议,但程序员应该按照场景,自定义协议.(网络传输的数据要怎么用,也要考虑数据是什么格式,里面包含哪些内容).

自定义协议约定:1.服务器,客户端要交互哪些信息

                          2.数据具体格式(网络上是字符串/二进制比特流).

客户端按照上述约定发送请求,服务器按照上述约定解析请求.

服务器按照上述约定构造响应,客户端也按照上述约定解析响应.

举个例子:点餐软件

打开点餐软件,显示出主页.主页里就要显示出商家列表,而且这些商家都是附近的(打开软件的时候,就需要把你的位置告诉服务器).显示的商家列表中,也会包含一些信息:如商家名称,图片,商家的评分,商家的简介等.(交互过程中需要传输哪些信息,并不是程序员规定的,而是产品经理规定)

而这里的数据格式组织,就有了固定的套路,属于程序员的事情.

客户端和服务器之间往往要交互的是"结构化数据"(一个结构体/类:包含很多属性).

网络传输的数据其实是"字符串","二进制比特流".

约定协议的过程,就是把结构化数据转成字符串/二进制比特流的过程.

把结构化的数据,转成字符串/二进制比特流这个操作,称为"序列化".

把字符串/二进制比特流还原成结构化数据,这个操作,称为"反序列化".

序列化/反序列化具体要组织成什么样的格式,这里包含哪些信息.

约定这两件事的过程就是自定义协议的过程.

为了让程序员简单约定这里的协议格式,这里有几个供参考的方案.

xml,  json, protobuffer

这里就简单一下json,其它的如果有兴趣的话可以自行了解.

json是当今非常主流,非常常用的数据组织格式了,举个例子如下:

请求:

       {

               userId: 1000,

               position: [经纬度]

       }

响应:

       [

               {

                       id: 1001,

                       name: "老八秘制小汉堡"

               },

               {

                       id: 1002,

                       name: "初饮味来"

               }

       ]

解释:主要用到的是键值对格式. 键和值之间用 : 分割. 键值对之间用 , 分割

把若干个键值对使用{ }括起来,此时就形成了一个json对象.

还可以把多个json对象放到一起,使用 , 分割开, 并且使用[ ]整体括起来.

特性:可读性很好,扩展性也很好,通过key来对数据起到解释说明的作用.

对于xml来说解释说明是通过标签,需要有开始和结束两个标签,比较占用空间.相比之下json只使用一个key就能描述,占用的空间就比xml更少,更节省带宽了.

虽然json比xml是节省了带宽但是很明显,当前这里的带宽仍是有浪费的部分.

尤其是这种数组格式的json,这种情况下往往传输的数据字段都是相同的.使刚才这里的key名字被重复传输了.

传输层

负责数据能够从发送端到接收端.

这一层是系统内核实现好了的,提供socket的api供程序员使用.

再谈端口号

端口号(port)标识了一个主机上进行通信的不同的应用程序;

在TCP/IP协议中,用"源IP","源端口号","目的IP","目的端口号","协议号"这样一个五元组来表识一个通信.

端口号范围划分

0-1023:知名端口号:HTTP,FTP,SSH等这些广为使用的应用层协议,他们的端口号都是固定的.

1024-65535:操作系统动态分配的端口号.客户端程序的端口号,就是由操作系统从这个范围中分配的.

认识知名的端口号

有些服务器是非常常用的,为了使用方便,人们约定一些常用的服务器,都是用以下固定的端口号:

ssh服务器,使用22端口

ftp服务器,使用21端口

telnet服务器,使用23端口

http服务器,使用80端口

https服务器,使用443

我们自己写一个程序使用端口号时,要避开这些知名端口号.

UDP协议

UDP协议端格式

我们知道,研究一个协议,主要就是研究报文格式,基于报文格式,了解这个协议其它各个属性.

UDP = 报头(重点) + 载荷(应用层数据包).

UDP报头中一共有4个字段,每个字段两个字节(一共八个字节),由于协议报头中使用两个字节表示端口号,端口号范围是: 0 ~ 65535. (这里的最大值是64kb),一旦数据超过64kb就会被截断.

16位UDP长度, 表示整个数据报(UDP首部 + UDP数据)的最大长度;

如果校验和出错,直接丢弃.

下面来讲解一下校验和:

校验和起到的效果,就是去尝试检查当前的数据是否存在问题.是否出现了比特翻转(网络中的校验和并非是简单的按照长度/数量作为校验标准的,一定是能让数据加入进去),就可以把错误的数据包丢掉.

简单讲一下校验的方法:

1.CRC算法完成校验(循环冗余校验):

比如要产生一个两个字节的校验和.

short checksum = 0;

for(循环遍历取出数据报中每个字节的数据) {

       checksum += 当前字节的数据;

}

加的过程,也有可能会溢出,这里也不用管.

UDP数据报发送方,在发送之前,先计算一遍CRC,把算好的CRC值放到UDP数据报中.(设这个CRC值为value1).  接下来这个数据包通过网络传输到接收端.接收端收到这个数据之后,也会按照同样的算法,再算一遍CRC的值,得到的结果是value2.比较自己计算的value2和收到的value1是否一致.如果是一致的,就说明数据ok,如果不一致,传输过程中就发生了比特翻转了.

上述CRC算法中,如果只有一个bit位发生翻转,能够100%发现问题,但如果有两个/多个bit位发生翻转,有可能恰好校验和和之前一样.

虽然这种概率比较低,可以忽略不计,但是要想有更高的精确度,就需要其它算法了.

除了CRC,还有精度更高的md5/sha1算法.

其中md5就涉及到一系列更加复杂的数学公式了.

介绍一下MD5算法的特点:

1.定长:无论数据有多长,算出来的md5最终值为固定长度.

2.分散:计算md5时,原始数据变化一点点,计算的md5差异就会很大,(这种特性,决定md5可作为字符串的hash算法).

3.不可逆:给一个源字符串,计算md5值很简单,但要想将md5值还原为字符串,几乎无法实现.

UDP特点

UDP传输过程类似于寄信.

1.无连接:知道对端的IP和端口号就可以直接传输,不需要建立连接.

2.不可靠:没有确认机制,没有重传机制;如果因为网络故障无法发送到对方,UDP协议层也不会给应用层返回任何错误信息;

3.面向数据报:不能够灵活的控制读写数据的次数和数量.

面向数据报

应用层交给UDP多长的报文,UDP原样发送,既不会拆分,也不会合并;

用UDP传输100个字节的数据.

如果发送端调用一次sendto,发送100字节,那么接收端也必须调用对应的一次recvfrom,接收100个字节;而不能循环调用10次recvfrom,每次接收10个字节.

基于UDP的应用层协议

NFS:网络文件系统,

TFTP:简单文件传输协议

DHCP:动态主机配置协议

BOOTP:启动协议(用于无盘设备启动)

DNS:域名解析协议.

当然,也包括你写的UDP程序时自定义的应用层协议.

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
251 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
2月前
|
网络协议 安全 网络安全
应用程序中的网络协议:原理、应用与挑战
网络协议是应用程序实现流畅运行和安全通信的基石。了解不同协议的特点和应用场景,以及它们面临的挑战和应对策略,对于开发者和用户都具有重要意义。在未来,随着技术的不断发展,网络协议也将不断优化和创新,为数字世界的发展提供更强大的支持。
|
3月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
694 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
4月前
|
前端开发 网络协议 安全
【网络原理】——HTTP协议、fiddler抓包
HTTP超文本传输,HTML,fiddler抓包,URL,urlencode,HTTP首行方法,GET方法,POST方法
|
4月前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
4月前
|
存储 JSON 缓存
【网络原理】——HTTP请求头中的属性
HTTP请求头,HOST、Content-Agent、Content-Type、User-Agent、Referer、Cookie。
|
4月前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密
|
4月前
|
XML JSON 网络协议
【网络原理】——拥塞控制,延时/捎带应答,面向字节流,异常情况
拥塞控制,延时应答,捎带应答,面向字节流(粘包问题),异常情况(心跳包)
|
4月前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
303 3
|
4月前
|
网络协议 算法 Java
【JavaEE】——初始网络原理
局域网,广域网,局域网连接方式,交换机,集线器,路由器,网络通信,五元组(源IP,源端口,目的IP,目的端口,协议),协议分层,TCP/IP五层网络协议,封装和分用,交换机和路由器的封装和分用

热门文章

最新文章