m基于深度学习网络的性别识别系统matlab仿真,带GUI界面

简介: m基于深度学习网络的性别识别系统matlab仿真,带GUI界面

1.算法仿真效果
matlab2022a仿真结果如下:

1.png
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
性别识别是计算机视觉领域的一个重要任务,它涉及到从图像或视频中自动检测并识别出人物的性别。近年来,深度学习,特别是卷积神经网络(CNN)、googlenet网络等,已成为性别识别的主流方法。

2.1 卷积神经网络(CNN)
CNN是一种特别适合处理图像数据的神经网络。它通过一系列卷积层、池化层和全连接层来提取和学习图像的特征。

卷积层:卷积层负责从输入图像中提取特征。它通过应用一系列可学习的滤波器(或卷积核)来实现这一点。每个滤波器都在输入数据的局部区域上进行卷积操作,产生一个特征图。卷积操作可以用以下数学公式表示:
(O{i,j} = \sum{m} \sum{n} I{i+m, j+n} \times K{m,n})
其中,(O
{i,j}) 是输出特征图中的一个元素,(I{i+m, j+n}) 是输入图像的一个局部区域,(K{m,n}) 是卷积核。

池化层:池化层负责对特征图进行下采样,以减少数据的空间尺寸和计算复杂度。常见的池化操作包括最大池化和平均池化。

全连接层:在CNN的最后,通常会有一个或多个全连接层,用于将学习到的特征映射到最终的分类输出上。

2.2 googlenet网络
GoogleNet算法的核心思想是采用一种称为“Inception”的网络结构,通过在多个尺度上提取图像特征,从而实现对目标物体的检测和分类。在疲劳检测中,GoogleNet模型首先对驾驶员面部图像进行预处理,然后通过多个卷积层和池化层提取面部特征,最后使用全连接层进行分类输出。

  GoogleNet模型的数学公式主要包括以下几个部分:

(1)卷积层计算:对于每个卷积层,计算输入图像与卷积核的卷积结果。公式如下:

     C = Conv2D(F, I) (3)

其中,C表示卷积结果,F表示卷积核,I表示输入图像。

(2)池化层计算:对于每个池化层,将输入特征图进行下采样,从而降低特征图的维度。公式如下:

  P = MaxPooling2D(C) (4)

其中,P表示池化结果,C表示输入特征图。

(3)全连接层计算:对于每个全连接层,将输入特征与权重进行线性组合,然后添加偏置项,并通过激活函数进行非线性变换。公式如下:

Z = W * P + B (5)

其中,Z表示全连接层的输出结果,W表示权重矩阵,P表示输入特征图,B表示偏置向量。

(4)分类输出:最后,将全连接层的输出结果进行softmax归一化,得到每个类别的概率值。公式如下:

y = Softmax(Z) (6)其中,y表示每个类别的概率值,Z表示全连接层的输出结果。

   基于深度学习网络的性别识别通过利用卷积神经网络来学习和提取图像中的特征,并通过全连接层将这些特征映射到性别分类上。通过合理的网络设计、有效的训练策略和大量的标注数据,深度学习模型能够在性别识别任务上达到很高的准确率。

3.MATLAB核心程序
```% 获取特征学习层和分类器层的名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 计算数据集的类别数目
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的全连接特征学习层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);
% 创建新的分类器层
New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 获取完整网络架构
Network_Architecture = layerGraph(net);
% 替换网络中的特征学习层和分类器层
New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);

% 设置训练选项
maxEpochs = NEpochs;
Minibatch_Size = NMB;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...
'MiniBatchSize', Minibatch_Size, ...
'MaxEpochs', maxEpochs, ...
'InitialLearnRate', LR, ...
'Shuffle', 'every-epoch', ...
'ValidationData', Resized_Validation_Dataset, ...
'ValidationFrequency', Validation_Frequency, ...
'Verbose', false, ...
'Plots', 'training-progress');

% 使用训练选项训练网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练后的网络
save gnet.mat net
```

相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
25 12
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
241 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)

热门文章

最新文章