Python 潮流周刊第 30 期(摘要)

简介: Python 潮流周刊第 30 期(摘要)


以下是本期摘要:

🦄文章&教程

Python 非洲:致 Python 软件基金会的一封公开信

Django 5.0 发布了!

56 行代码用 Python 实现一个 Flex/Lex

如何在 FastAPI 正确地使用依赖注入?

为什么不应该在 Python 中过度使用列表解析式?

非类型化的 Python:曾经的 Python

用 django-watson 给 Django 项目添加全文搜索

解析 Celery 的扇出模式

Python Asyncio 的 7 个替代库

解密 CPython:当执行 a+b 时,背后发生了什么?

如何使用 Python 播放 GIF?

用 Python 开发一个微型的 REPL

🐿️项目&资源

self-operating-computer:使多模态模型能够操作计算机

marko:具有高扩展性的 markdown 解析器

WeChatMsg:导出微信聊天记录成 HTML/Word/CSV文档

PyWxDump:获取微信账号信息、导出聊天记录

mlx:适用于 Apple 芯片的阵列框架

DSAlgo:数据结构和算法的面试题集锦

Python 在线编译器网站

aio-libs:65 个基于 Asyncio 的库/项目

kolo:查看 Django 应用的执行过程

dnsteal:DNS 渗透工具,通过 DNS 请求隐秘发送文件

github-trends:使用自定义卡片美化 GitHub 个人主页

Depix:还原打了马赛克的截图信息


目录
相关文章
|
SQL 文字识别 机器人
Python 潮流周刊第 36 期(摘要)
Python 潮流周刊第 36 期(摘要)
84 3
|
SQL 人工智能 JavaScript
Python 潮流周刊第 38 期(摘要)+赠书5本
Python 潮流周刊第 38 期(摘要)+赠书5本
69 2
|
12月前
|
SQL 人工智能 自然语言处理
Python 潮流周刊#52:Python 处理 Excel 的资源
探索Python精彩:文章涵盖正则、代码恢复、PEP新规范、轻量级打包、在线开发、动态生成GitHub README、自定义linting、代码转图片等。项目资源包括Excel处理、虚拟环境管理、Tensor谜题、依赖注入框架、Web应用转换、AI自动化测试、语法高亮、BI模型查询及Python监控库。在当前环境下,持续学习提升竞争力,Python Weekly提供丰富的学习资源,助力技术精进和职业发展。
|
12月前
|
TensorFlow 语音技术 算法框架/工具
Python 潮流周刊#51:用 Python 绘制美观的图表
探索 Python 精彩:从 Streamlit 的交互式图表到 TensorFlow 的衰落,深入学习项目如 parlertts 和 FunClip,以及 Python 资源,包括 UXsim 交通模拟和 The-Python-Graph-Gallery。提升技能,紧跟 Python 周刊,打造竞争优势。[[1](https://xiaobot.net/p/python_weekly)] [[9](https://xiaobot.net/p/python_weekly)]
|
人工智能 Rust Prometheus
Python 潮流周刊第 39 期(摘要)
Python 潮流周刊第 39 期(摘要)
78 5
|
机器学习/深度学习 开发框架 人工智能
Python 潮流周刊第 37 期(摘要)
Python 潮流周刊第 37 期(摘要)
66 1
|
2月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
13天前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
50 11
|
2月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
103 28
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。