为什么 Python 没有函数重载?如何用装饰器实现函数重载?

简介: 为什么 Python 没有函数重载?如何用装饰器实现函数重载?


int area(int length, int breadth) {
  return length * breadth;
}
float area(int radius) {
  return 3.14 * radius * radius;
}

在以上例子中(用 c++ 编写),函数 area 被重载了两个实现。第一个函数接收两个参数(都是整数),表示矩形的长度和宽度,并返回矩形的面积。另一个函数只接收一个整型参数,表示圆的半径。

当我们像 area(7) 这样调用函数 area 时,它会调用第二个函数,而 area(3,4) 则会调用第一个函数。

为什么 Python 中没有函数重载?

Python 不支持函数重载。当我们定义了多个同名的函数时,后面的函数总是会覆盖前面的函数,因此,在一个命名空间中,每个函数名仅会有一个登记项(entry)。

Python猫注:这里说 Python 不支持函数重载,指的是在不用语法糖的情况下。使用 functools 库的 singledispatch 装饰器,Python 也可以实现函数重载。原文作者在文末的注释中专门提到了这一点。

通过调用 locals() 和 globals() 函数,我们可以看到 Python 的命名空间中有什么,它们分别返回局部和全局命名空间。

def area(radius):
  return 3.14 * radius ** 2
>>> locals()
{
  ...
  'area': <function area at 0x10476a440>,
  ...
}

在定义一个函数后,接着调用 locals() 函数,我们会看到它返回了一个字典,包含了定义在局部命名空间中的所有变量。字典的键是变量的名称,值是该变量的引用/值。

当程序在运行时,若遇到另一个同名函数,它就会更新局部命名空间中的登记项,从而消除两个函数共存的可能性。因此 Python 不支持函数重载。这是在创造语言时做出的设计决策,但这并不妨碍我们实现它,所以,让我们来重载一些函数吧。

在 Python 中实现函数重载

我们已经知道 Python 是如何管理命名空间的,如果想要实现函数重载,就需要这样做:

  • 维护一个虚拟的命名空间,在其中管理函数定义
  • 根据每次传递的参数,设法调用适当的函数

为了简单起见,我们在实现函数重载时,通过不同的参数数量来区分同名函数。

把函数封装起来

我们创建了一个名为Function的类,它可以封装任何函数,并通过重写的__call__方法来调用该函数,还提供了一个名为key的方法,该方法返回一个元组,使该函数在整个代码库中是唯一的。

from inspect import getfullargspec
class Function(object):
  """Function类是对标准的Python函数的封装"""
  def __init__(self, fn):
    self.fn = fn
    
  def __call__(self, *args, **kwargs):
    """当像函数一样被调用时,它就会调用被封装的函数,并返回该函数的返回值"""
    return self.fn(*args, **kwargs)
  def key(self, args=None):
    """返回一个key,能唯一标识出一个函数(即便是被重载的)"""
    # 如果不指定args,则从函数的定义中提取参数
    if args is None:
      args = getfullargspec(self.fn).args
    
    return tuple([
      self.fn.__module__,
      self.fn.__class__,
      self.fn.__name__,
      len(args or []),
    ])

在上面的代码片段中,key函数返回一个元组,该元组唯一标识了代码库中的函数,并且记录了:

  • 函数所属的模块
  • 函数所属的类
  • 函数名
  • 函数接收的参数量

被重写的__call__方法会调用被封装的函数,并返回计算的值(这没有啥特别的)。这使得Function的实例可以像函数一样被调用,并且它的行为与被封装的函数完全一样。

def area(l, b):
  return l * b
>>> func = Function(area)
>>> func.key()
('__main__', <class 'function'>, 'area', 2)
>>> func(3, 4)
12

在上面的例子中,函数area被封装在Function中,并被实例化成func。key() 返回一个元组,其第一个元素是模块名__main__,第二个是类<class 'function'>,第三个是函数名area,而第四个则是该函数接收的参数数量,即 2。

这个示例还显示出,我们可以像调用普通的 area函数一样,去调用实例 func,当传入参数 3 和 4时,得到的结果是 12,这正是调用 area(3,4) 时会得到的结果。当我们接下来运用装饰器时,这种行为将会派上用场。

构建虚拟的命名空间

我们要创建一个虚拟的命名空间,用于存储在定义阶段收集的所有函数。

由于只有一个命名空间/注册表,我们创建了一个单例类,并把函数保存在字典中。该字典的键不是函数名,而是我们从 key 函数中得到的元组,该元组包含的元素能唯一标识出一个函数。

通过这样,我们就能在注册表中保存所有的函数,即使它们有相同的名称(但不同的参数),从而实现函数重载。

class Namespace(object):
  """Namespace是一个单例类,负责保存所有的函数"""
  __instance = None
    
  def __init__(self):
    if self.__instance is None:
      self.function_map = dict()
      Namespace.__instance = self
    else:
      raise Exception("cannot instantiate a virtual Namespace again")
    
  @staticmethod
  def get_instance():
    if Namespace.__instance is None:
      Namespace()
    return Namespace.__instance
  def register(self, fn):
    """在虚拟的命名空间中注册函数,并返回Function类的可调用实例"""
    func = Function(fn)
    self.function_map[func.key()] = fn
    return func

Namespace类有一个register方法,该方法将函数 fn 作为参数,为其创建一个唯一的键,并将函数存储在字典中,最后返回封装了 fn 的Function的实例。这意味着 register 函数的返回值也是可调用的,并且(到目前为止)它的行为与被封装的函数 fn 完全相同。

def area(l, b):
  return l * b
>>> namespace = Namespace.get_instance()
>>> func = namespace.register(area)
>>> func(3, 4)
12

使用装饰器作为钩子

既然已经定义了一个能够注册函数的虚拟命名空间,那么,我们还需要一个钩子来在函数定义期间调用它。在这里,我们会使用 Python 装饰器。

在 Python 中,装饰器用于封装一个函数,并允许我们在不修改该函数的结构的情况下,向其添加新功能。装饰器把被装饰的函数 fn 作为参数,并返回一个新的函数,用于实际的调用。新的函数会接收原始函数的 args 和 kwargs,并返回最终的值。

以下是一个装饰器的示例,演示了如何给函数添加计时功能。

import time
def my_decorator(fn):
  """这是一个自定义的函数,可以装饰任何函数,并打印其执行过程的耗时"""
  def wrapper_function(*args, **kwargs):
    start_time = time.time()
    # 调用被装饰的函数,并获取其返回值
    value = fn(*args, **kwargs)
    print("the function execution took:", time.time() - start_time, "seconds")
    # 返回被装饰的函数的调用结果
    return value
  return wrapper_function
@my_decorator
def area(l, b):
  return l * b
>>> area(3, 4)
the function execution took: 9.5367431640625e-07 seconds
12

在上面的例子中,我们定义了一个名为 my_decorator 的装饰器,它封装了函数 area,并在标准输出上打印出执行 area 所需的时间。

每当解释器遇到一个函数定义时,就会调用装饰器函数 my_decorator(用它封装被装饰的函数,并将封装后的函数存储在 Python 的局部或全局命名空间中),对于我们来说,它是在虚拟命名空间中注册函数的理想钩子。

因此,我们创建了名为overload的装饰器,它能在虚拟命名空间中注册函数,并返回一个可调用对象。

def overload(fn):
  """用于封装函数,并返回Function类的一个可调用对象"""
  return Namespace.get_instance().register(fn)

overload装饰器借助命名空间的 .register() 函数,返回 Function 的一个实例。现在,无论何时调用函数(被 overload 装饰的),它都会调用由 .register() 函数所返回的函数——Function 的一个实例,其 call 方法会在调用期间使用指定的 args 和 kwargs 执行。

现在剩下的就是在 Function 类中实现__call__方法,使得它能根据调用期间传入的参数而调用相应的函数。

从命名空间中找到正确的函数

想要区别出不同的函数,除了通常的模块、类和函数名以外,还可以依据函数的参数数量,因此,我们在虚拟的命名空间中定义了一个 get 方法,它会从 Python 的命名空间中读取待区分的函数以及实参,最后依据参数的不同,返回出正确的函数。我们没有更改 Python 的默认行为,因此在原生的命名空间中,同名的函数只有一个。

这个 get 函数决定了会调用函数的哪个实现(如果重载了的话)。找到正确的函数的过程非常简单——先使用 key 方法,它利用函数和参数来创建出唯一的键(正如注册时所做的那样),接着查找这个键是否存在于函数注册表中;如果存在,则获取其映射的实现。

def get(self, fn, *args):
  """从虚拟命名空间中返回匹配到的函数,如果没找到匹配,则返回None"""
  func = Function(fn)
  return self.function_map.get(func.key(args=args))

get 函数创建了 Function 类的一个实例,这样就可以复用类的 key 函数来获得一个唯一的键,而不用再写创建键的逻辑。然后,这个键将用于从函数注册表中获取正确的函数。

实现函数的调用

前面说过,每次调用被 overload 装饰的函数时,都会调用 Function 类中的__call__方法。我们需要让__call__方法从命名空间的 get 函数中,获取出正确的函数,并调用之。

__call__方法的实现如下:

def __call__(self, *args, **kwargs):
  """重写能让类的实例变可调用对象的__call__方法"""
  # 依据参数,从虚拟命名空间中获取将要调用的函数
  fn = Namespace.get_instance().get(self.fn, *args)
  if not fn:
    raise Exception("no matching function found.")
  # 调用被封装的函数,并返回调用的结果
  return fn(*args, **kwargs)

该方法从虚拟命名空间中获取正确的函数,如果没有找到任何函数,它就抛出一个 Exception,如果找到了,就会调用该函数,并返回调用的结果。

运用函数重载

准备好所有代码后,我们定义了两个名为 area 的函数:一个计算矩形的面积,另一个计算圆的面积。下面定义了两个函数,并使用overload装饰器进行装饰。

@overload
def area(l, b):
  return l * b
@overload
def area(r):
  import math
  return math.pi * r ** 2
>>> area(3, 4)
12
>>> area(7)
153.93804002589985

当我们用一个参数调用 area 时,它返回了一个圆的面积,当我们传递两个参数时,它会调用计算矩形面积的函数,从而实现了函数 area 的重载。

原作者注:从 Python 3.4 开始,Python 的 functools.singledispatch 支持函数重载。从 Python 3.8 开始,functools.singledispatchmethod 支持重载类和实例方法。感谢 Harry Percival 的指正。

总结

Python 不支持函数重载,但是通过使用它的基本结构,我们捣鼓了一个解决方案。

我们使用装饰器和虚拟的命名空间来重载函数,并使用参数的数量作为区别函数的因素。我们还可以根据参数的类型(在装饰器中定义)来区别函数——即重载那些参数数量相同但参数类型不同的函数。

重载能做到什么程度,这仅仅受限于getfullargspec函数和我们的想象。使用前文的思路,你可能会实现出一个更整洁、更干净、更高效的方法,所以,请尝试实现一下吧。

正文到此结束。以下附上完整的代码:

# 模块:overload.py
from inspect import getfullargspec
class Function(object):
  """Function is a wrap over standard python function
  An instance of this Function class is also callable
  just like the python function that it wrapped.
  When the instance is "called" like a function it fetches
  the function to be invoked from the virtual namespace and then
  invokes the same.
  """
  def __init__(self, fn):
    self.fn = fn
  
  def __call__(self, *args, **kwargs):
    """Overriding the __call__ function which makes the
    instance callable.
    """
    # fetching the function to be invoked from the virtual namespace
    # through the arguments.
    fn = Namespace.get_instance().get(self.fn, *args)
    if not fn:
      raise Exception("no matching function found.")
    # invoking the wrapped function and returning the value.
    return fn(*args, **kwargs)
  def key(self, args=None):
    """Returns the key that will uniquely identifies
    a function (even when it is overloaded).
    """
    if args is None:
      args = getfullargspec(self.fn).args
    return tuple([
      self.fn.__module__,
      self.fn.__class__,
      self.fn.__name__,
      len(args or []),
    ])
class Namespace(object):
  """Namespace is the singleton class that is responsible
  for holding all the functions.
  """
  __instance = None
    
  def __init__(self):
    if self.__instance is None:
      self.function_map = dict()
      Namespace.__instance = self
    else:
      raise Exception("cannot instantiate Namespace again.")
    
  @staticmethod
  def get_instance():
    if Namespace.__instance is None:
      Namespace()
    return Namespace.__instance
  def register(self, fn):
    """registers the function in the virtual namespace and returns
    an instance of callable Function that wraps the function fn.
    """
    func = Function(fn)
    specs = getfullargspec(fn)
    self.function_map[func.key()] = fn
    return func
  
  def get(self, fn, *args):
    """get returns the matching function from the virtual namespace.
    return None if it did not fund any matching function.
    """
    func = Function(fn)
    return self.function_map.get(func.key(args=args))
def overload(fn):
  """overload is the decorator that wraps the function
  and returns a callable object of type Function.
  """
  return Namespace.get_instance().register(fn)

最后,演示代码如下:

from overload import overload
@overload
def area(length, breadth):
  return length * breadth
@overload
def area(radius):
  import math
  return math.pi * radius ** 2
@overload
def area(length, breadth, height):
  return 2 * (length * breadth + breadth * height + height * length)
@overload
def volume(length, breadth, height):
  return length * breadth * height
@overload
def area(length, breadth, height):
  return length + breadth + height
@overload
def area():
  return 0
print(f"area of cuboid with dimension (4, 3, 6) is: {area(4, 3, 6)}")
print(f"area of rectangle with dimension (7, 2) is: {area(7, 2)}")
print(f"area of circle with radius 7 is: {area(7)}")
print(f"area of nothing is: {area()}")
print(f"volume of cuboid with dimension (4, 3, 6) is: {volume(4, 3, 6)}")
目录
相关文章
|
14天前
|
测试技术 Python
Python中的装饰器:从入门到精通
【10月更文挑战第7天】本文旨在通过浅显易懂的方式,向读者介绍Python中装饰器的概念、用法和高级应用。我们将从装饰器的定义开始,逐步深入到如何创建和使用装饰器,最后探讨装饰器在实战中的应用。文章将结合代码示例,帮助读者更好地理解和掌握这一强大的工具。
|
3天前
|
存储 索引 Python
|
1天前
|
开发框架 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第20天】在编程的海洋中,简洁与强大是航行的双桨。Python的装饰器,这一高级特性,恰似海风助力,让代码更优雅、功能更强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一步步深入其内涵与意义。
|
4天前
|
Python
Python生成器、装饰器、异常
【10月更文挑战第15天】
|
11天前
|
Python
探索Python中的装饰器:从基础到高级
【10月更文挑战第11天】 在这篇文章中,我们将深入探讨Python装饰器的强大功能和灵活应用。装饰器是Python中一个非常有趣的特性,它允许我们修改或增强函数的行为,而无需直接修改函数本身的代码。通过使用装饰器,我们可以实现横切关注点(AOP)的编程范式,提高代码的可重用性和模块化。本文将介绍装饰器的基本概念、使用方法以及如何创建自定义装饰器。同时,我们还将探讨装饰器的一些高级用法,如带参数的装饰器、多层装饰器和偏函数装饰器等。
19 5
|
8天前
|
存储 程序员 Python
了解Python中的装饰器 | python小知识
装饰器是Python中一个非常强大且灵活的特性,它允许程序员在不改变函数本身的情况下扩展或修改函数的行为。本文将带你从零开始,了解装饰器的工作原理,常见的基本操作,并深入介绍`@dataclass`和`@property`装饰器的用法。 【10月更文挑战第10天】
20 2
|
9天前
|
设计模式 数据安全/隐私保护 开发者
Python中的装饰器:从基础到高级应用
本文将深入探讨Python中一个极其强大且灵活的特性——装饰器。装饰器本质上是一个函数,它允许我们对另一个函数或类进行扩展,而无需永久性地修改它们。这一特性使得装饰器成为实现横切关注点(如日志记录、访问控制等)的理想工具。我们将从装饰器的基本概念入手,逐步讲解其工作原理,并通过一系列示例展示如何在实际项目中巧妙利用装饰器来提升代码的可维护性和可读性。最后,我们还将探索一些高级装饰器技巧,帮助你在编写Python程序时更加游刃有余。
|
8天前
|
缓存 程序员 开发者
探索Python中的装饰器:一种优雅的代码增强技巧
【10月更文挑战第13天】 在本文中,我们将深入探讨Python中的装饰器,这是一种强大的工具,它允许程序员以简洁而高效的方式扩展或修改函数和类的行为。通过具体示例,我们将展示如何利用装饰器来优化代码结构,提高开发效率,并实现如日志记录、性能计时等常见功能。本文旨在为读者提供一个关于Python装饰器的全面理解,从而能够在他们的项目中灵活运用这一技术。
19 1
|
11天前
|
缓存 测试技术 开发者
探索Python中的装饰器:从基础到高级应用
本文深入探讨了Python中装饰器的概念、作用及其在实际编程中的应用。装饰器是一种特殊类型的函数,它允许我们在不修改现有代码的情况下,增加或修改类或函数的行为。我们将从装饰器的基本定义开始,逐步讲解其工作原理,并通过实例展示如何创建和使用基本的装饰器。进一步地,本文还将介绍一些高级装饰器技术,包括带参数的装饰器、使用functools.wraps进行签名保全、以及如何在类中使用装饰器。最后,我们将探讨装饰器的实际应用案例,帮助读者更好地理解和运用这一强大的Python特性。
|
12天前
|
设计模式 开发者 Python
Python中的装饰器:简化代码与增强功能
【10月更文挑战第9天】在编程的世界里,效率和可读性是衡量代码质量的两大关键指标。Python语言以其简洁明了的语法赢得了无数开发者的青睐,而装饰器则是其独特魅力之一。本文将深入探讨装饰器的工作原理、使用方法以及如何通过自定义装饰器来提升代码的重用性和可维护性,让读者能够更加高效地编写出既优雅又功能强大的代码。