即时通讯技术文集(第34期):IM群聊技术合集(Part1) [共15篇]

简介: 为了更好地分类阅读 52im.net 总计1000多篇精编文章,我将在每周三推送新的一期技术文集,本次是第34 期。

为了更好地分类阅读 52im.net 总计1000多篇精编文章,我将在每周三推送新的一期技术文集,本次是第34 期。

[- 1 -] 快速裂变:见证微信强大后台架构从0到1的演进历程(一)

[链接] http://www.52im.net/thread-168-1-1.html

[摘要] 2个月的开发时间,微信后台系统经历了从0到1的过程。从小步慢跑到快速成长,经历了平台化到走出国门,微信交出的这份优异答卷,解题思路是怎样的?


[- 2 -] 如何保证IM实时消息的“时序性”与“一致性”?

[链接] http://www.52im.net/thread-714-1-1.html

[摘要] 实时消息时序和一致性是分布式系统架构设计中非常难的问题(尤其IM应用这种以消息为中心的应用形态),困难在哪?有什么常见优化实践?这就是本文要讨论的内容。


[- 3 -] IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?

[链接] http://www.52im.net/thread-715-1-1.html

[摘要] “用户在线状态的一致性”(单聊好友在线状态、群聊用户在线状态)是IM应用领域比较难解决的一个技术问题,如何精准实时的获得好友、群友的在线状态,是今天将要探讨的话题。


[- 4 -]IM群聊消息如此复杂,如何保证不丢不重?

[链接] http://www.52im.net/thread-753-1-1.html

[摘要] 由于“消息风暴扩散系数”的存在(概念详见《IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?》),群消息的复杂度要远高于一对一的单聊消息。群消息的实时性、可达性、离线消息是今天将要讨论的核心话题。


[- 5 -] 微信后台团队:微信后台异步消息队列的优化升级实践分享

[链接] http://www.52im.net/thread-801-1-1.html

[摘要] 本文分享了该组件2.0版本的功能特点及优化实践,希望能为类似业务(比如移动端IM系统等)的消息队列设计提供一定的参考。


[- 6 -] 移动端IM中大规模群消息的推送如何保证效率、实时性?

[链接] http://www.52im.net/thread-1221-1-1.html

[摘要] 当然,实际在生产环境下,群消息的发送都会想尽办法进行压缩,并开展各种改善性能的处理办法,而不是像上述举例里的直接扩散写(即2000人群里,一条消息被简单地复制为2000条一对一的消息投递)。具体有哪些优先策略?本文或许可以带给你一些启发。


[- 7 -] 现代IM系统中聊天消息的同步和存储方案探讨

[链接] http://www.52im.net/thread-1230-1-1.html

[摘要] 本文内容主要涉及IM系统中的消息系统架构,探讨一种适用于大用户量的消息同步以及存储系统的架构实现,能够支持消息系统中的高级特性『多端同步』以及『消息漫游』。在性能和规模上,能够做到全量消息云端存储,百万TPS以及毫秒级延迟的消息同步能力。


[- 8 -] 关于IM即时通讯群聊消息的乱序问题讨论

[链接] http://www.52im.net/thread-1436-1-1.html

[摘要] 问题描述:客户端A、B、C,服务端S,例如:A发三条群消息,B、C收到的消息都是乱序,目前问题:A发第一条消息失败之后排到队列,这时服务端还在持续发消息,那么第二条消息送达到B、C,然后客户端最先显示的就不是第一条消息,导致乱序出现。


[- 9 -]  IM群聊消息的已读回执功能该怎么实现?

[链接] http://www.52im.net/thread-1611-1-1.html

[摘要] 那么群聊消息的收发流程、消息的送达保证、已读回执机制,到底该怎么实现呢?这就是今天要讨论的话题。


[- 10 -] IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?

[链接] http://www.52im.net/thread-1616-1-1.html

[摘要] 任何技术方案,都不是天才般灵感乍现想到的,一定是一个演进迭代,逐步优化的过程。今天就聊一聊,IM群聊消息,为啥只需要存一份。


[- 11 -] 一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践

[链接] http://www.52im.net/thread-2015-1-1.html

[摘要] 本文将分享的是一套生产环境下的IM群聊消息系统的高可用、易伸缩、高并发架构设计实践,属于原创第一手资料,内容较专业,适合有一定IM架构经验的后端程序员阅读。


[- 12 -] [技术脑洞] 如果把14亿中国人拉到一个微信群里技术上能实现吗?

[链接] http://www.52im.net/thread-2017-1-1.html

[摘要] 听到这个问题,全厂的人都炸了。要知道一个微信群最多只能有500人啊,QQ群也只有2000而已。当你有机会加入一个2000人QQ群的时候,你就已经感受到“信息爆炸”的可怕……


[- 13 -] IM群聊机制,除了循环去发消息还有什么方式?如何优化?

[链接] http://www.52im.net/thread-2213-1-1.html

[摘要] 目前我是用循环来获取群成员,然后获取群成员ID去循环调用senddata()方法,想不用循环或者用其他什么方式来优化群聊循环发送这个机制,各位大佬有什么办法没?


[- 14 -] 网易云信技术分享:IM中的万人群聊技术方案实践总结

[链接] http://www.52im.net/thread-2707-1-1.html

[摘要] 本文内容是网易云信团队为了响应万人群聊功能需求,在设计实现万人群聊技术方案中总结的技术实践,借此机会分享给各IM开发者同行。


[- 15 -] 阿里钉钉技术分享:企业级IM王者——钉钉在后端架构上的过人之处

[链接] http://www.52im.net/thread-2848-1-1.html

[摘要] 本文适合有一定IM后端架构设计经验的开发者阅读,或许出于商业产品技术秘密的考虑,分享者在本次所分享的内容上有所保留,鉴于阿里对于钉钉在技术上的内容分享做的非常少,所以本文虽然内容不够全面,但仍然值得一读。


👉52im社区本周新文:《抖音技术分享:飞鸽IM桌面端基于Rust语言进行重构的技术选型和实践总结》,欢迎阅读!👈

我是Jack Jiang,我为自已带盐!https://github.com/JackJiang2011/MobileIMSDK/

目录
相关文章
|
1月前
|
存储 网络协议 前端开发
基于开源IM即时通讯框架MobileIMSDK:RainbowChat v11.7版已发布
Android端主要更新内容: 1)[优化] 优化了首页“消息”列表中单聊类型未正确同步时的收发消息和点击后的处理逻辑; 2)[优化] 优化了首页“消息”列表中同一好友和陌生人会话不能自动合并的问题;
55 2
|
1月前
|
存储 自然语言处理 机器人
实战揭秘:当RAG遇上企业客服系统——从案例出发剖析Retrieval-Augmented Generation技术的真实表现与应用局限,带你深入了解背后的技术细节与解决方案
【10月更文挑战第3天】随着自然语言处理技术的进步,结合检索与生成能力的RAG技术被广泛应用于多个领域,通过访问外部知识源提升生成内容的准确性和上下文一致性。本文通过具体案例探讨RAG技术的优势与局限,并提供实用建议。例如,一家初创公司利用LangChain框架搭建基于RAG的聊天机器人,以自动化FAQ系统减轻客服团队工作负担。尽管该系统在处理简单问题时表现出色,但在面对复杂或多步骤问题时存在局限。此外,RAG系统的性能高度依赖于训练数据的质量和范围。因此,企业在采用RAG技术时需综合评估需求和技术局限性,合理规划技术栈,并辅以必要的人工干预和监督机制。
94 3
|
25天前
|
移动开发 网络协议 小程序
基于开源IM即时通讯框架MobileIMSDK:RainbowChat-iOS端v9.1版已发布
RainbowChat是一套基于开源IM聊天框架 MobileIMSDK 的产品级移动端IM系统。RainbowChat源于真实运营的产品,解决了大量的屏幕适配、细节优化、机器兼容问题
55 5
|
16天前
|
人工智能 自然语言处理 安全
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
|
1月前
|
存储 安全 开发工具
百度公共IM系统的Andriod端IM SDK组件架构设计与技术实现
本文主要介绍了百度公共IM系统的Andriod端IM SDK的建设背景、IM SDK主要结构和工作流程以及建设过程遇到的问题和解决方案。
53 3
|
3月前
|
数据采集 监控 测试技术
大型IM稳定性监测实践:手Q客户端性能防劣化系统的建设之路
本文以iOS端为例,详细分享了手 Q 客户端性能防劣化系统从0到1的构建之路,相信对业界和IM开发者们都有较高的借鉴意义。
129 2
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI技术在智能客服系统中的应用与挑战
【9月更文挑战第32天】本文将探讨AI技术在智能客服系统中的应用及其面临的挑战。我们将分析AI技术如何改变传统客服模式,提高服务质量和效率,并讨论在实际应用中可能遇到的问题和解决方案。
236 65
|
16天前
|
人工智能 自然语言处理 搜索推荐
选型攻略 | 智能客服系统该怎么选?(好用的智能客服系统推荐)
智能客服系统的选型需要综合考虑渠道功能、系统性能、客服工作管理、客户管理以及成本效益等因素。目前合力亿捷推出的智能知识库,梳理海量知识,根据不同主题对知识进行分类,使其结构更清晰。
46 0
|
2月前
|
数据挖掘 API
如何选择适合的售后工单管理系统
选择合适的售后工单管理系统需评估需求和预算,考察功能、技术支持及服务商可靠性,并全面试用评估。ZohoDesk适合初创和中小企业,具备强大的工单管理、报告分析及可定制性,助力提升服务质量和客户体验。通过合适系统,企业不仅能优化客户服务流程,还能通过数据分析支持决策,推动长远发展。
64 16
|
2月前
|
人工智能 自然语言处理 前端开发
从客服场景谈:大模型如何接入业务系统
本文探讨了大模型在AI客服中的应用。大模型虽具有强大的知识生成能力,但在处理具体业务如订单咨询、物流跟踪等问题时,需结合数据库查询、API调用等手段。文章提出用Function Call连接大模型与业务系统,允许大模型调用函数获取私域知识。通过具体示例展示了如何设计系统提示词、实现多轮对话、定义Function Call函数,并利用RAG技术检索文档内容。最后,展示了该方案在订单查询和产品咨询中的实际效果。

热门文章

最新文章