python 插值算法

简介: 最近在做时间序列预测时,在突增或者突降的变化剧烈的情况下,拟合参数的效果不好,有用到插值的算法补全一些数据来平滑剧烈变化过程。还有在图像处理中,也经常有用到插值算法来改变图像的大小,在图像超分(Image Super-Resolution)中上采样也有插值的身影【2月更文挑战第8天】

python 插值算法

1. 什么是插值

最近在做时间序列预测时,在突增或者突降的变化剧烈的情况下,拟合参数的效果不好,有用到插值的算法补全一些数据来平滑剧烈变化过程。还有在图像处理中,也经常有用到插值算法来改变图像的大小,在图像超分(Image Super-Resolution)中上采样也有插值的身影。

插值(interpolation),顾名思义就是插入一些新的数据,当然这些值是根据已有数据生成。插值算法有很多经典算法, 本文分享如下:

  • 线性插值
  • 双线性插值
  • 双三次插值bicubic interpolation

2. 插值算法原理和实现

2.1 线性插值

线性插值是最简单的插值算法。如下图已知(x0, y0) (x1, y1),在x处插值一点(x, y)。

yyq-2021-07-10-23-00-11.png

可以通过简单几何知识来推出公式

yyq-2021-07-10-23-07-09.png
yyq-2021-07-10-23-08-02.png

实现上直接套公式,如果想插值多个点,可以利用线性回归的方式。

import os
import numpy as np
from sklearn.linear_model import LinearRegression

def linear_interpolation(data, inter_num=4):
    clf = LinearRegression()
    X = np.array([[1], [inter_num+2]])
    y = data
    clf.fit(X, y)
    inter_values = clf.predict(np.array([ [i+2] for i in range(inter_num)]))
    return inter_values
data = [[10], [20]]
linear_interpolation(data, 1)
# array([[15.]])

def manual_linear_interpolation(x0, y0, x1, y1, x):
    return y0+(x-x0)*(y1-y0)/(x1-x0)
manual_linear_interpolation(1, 10, 3, 20, 2)
# 15.0

线性插值算法经常用在平滑数据上,也用在缺失值预处理中。

2.2 双线性插值

双线性插值是在两个方向上同时进行线性插值,经常用在图像处理中。双线性插值是已知2*2个点,插值生成一个点的过程。

如下图所示,双线性插值已知(x0, y1)(x0, y0)(x1, y1)(x1, y0)4个点,插值计算(x, y)。

  • 先插值生成(x, y1)(x, y0)

    yyq-2021-07-10-23-25-32.png

  • 在插值生成(x, y)

    yyq-2021-07-10-23-25-59.png

yyq-2021-07-10-23-20-39.png

import cv2
lean_img = cv2.imread('./lena.jpg')
lena_x2 = cv2.resize(lean_img, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_LINEAR)

2.3 双三次插值

双线性插值利用22个点插值生成一个新的点,而双三次插值利用44个点来插值一个新的点。插值的过程就是如何估计aij, aij可以认为是16个点对插值点的影响因子。

yyq-2021-07-11-23-17-40.png

影响因子设计来自于Cubic Convolution Interpolation For Digital Image Processing,

以下为Bicubic函数

yyq-2021-07-11-23-45-50.png
yyq-2021-07-11-23-46-32.png

import cv2
lean_img = cv2.imread('./lena.jpg')
lena_x2_cubic = cv2.resize(lean_img, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC)

左边为双线性插值,右边有双三次插值,可以看出双三次插值效果好,双线性插值更平滑一点,清晰度不足。

yyq-2021-07-12-23-21-24.png
yyq-2021-07-12-23-24-03.png

3. 总结

本文介绍了三种常见的插值算法以及在数字图像处理中的应用。总结如下:

  • 线性插值:通过2点插值新的点,可以利用线性回归计算插值点
  • 双线性插值:通过4个点插值新的点
  • 双三次插值:通过16个点插值新的点,插值权重利用bicubic函数
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
23天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
125 67
|
23天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
115 61
|
24天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
104 63
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
23天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
23天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
机器学习/深度学习 算法 大数据
蓄水池抽样算法详解及Python实现
蓄水池抽样是一种适用于从未知大小或大数据集中高效随机抽样的算法,确保每个元素被选中的概率相同。本文介绍其基本概念、工作原理,并提供Python代码示例,演示如何实现该算法。
31 1
|
1月前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
26 3
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
下一篇
DataWorks