ReentrantLock工作原理

简介: ReentrantLock工作原理

AQS原理分析

什么是AQS

      java.util.concurrent包中的大多数同步器实现都是围绕着共同的基础行为,比如等待队列、条件队列、独占获取、共享获取等,而这些行为的抽象就是基于 AbstractQueuedSynchronizer(简称AQS) 实现的,AQS是一个抽象同步框架,可以用来实现一个依赖状态的同步器。JDK中提供的大多数的同步器如Lock, Latch, Barrier等,都是基于AQS框架来实现的。

  • 一般是通过一个内部类Sync继承 AQS
  • 将同步器所有调用都映射到Sync对应的方法

AQS具备的特性:

  • 阻塞等待队列
  • 共享/独占
  • 公平/非公平
  • 可重入
  • 允许中断

AQS内部维护属性 volatile int state

  • state表示资源的可用状态
  • State三种访问方式:
  • getState()
  • setState()
  • compareAndSetState()

AQS定义两种资源共享方式

  • Exclusive-独占,只有一个线程能执行,如ReentrantLock
  • Share-共享,多个线程可以同时执行,如Semaphore/CountDownLatch

AQS定义两种队列

  • 同步等待队列: 主要用于维护获取锁失败时入队的线程
  • 条件等待队列: 调用await()的时候会释放锁,然后线程会加入到条件队列,调用signal()唤醒的时候会把条件队列中的线程节点移动到同步队列中,等待再次获得锁

AQS 定义了5个队列中节点状态:

1. 值为0,初始化状态,表示当前节点在sync队列中,等待着获取锁。

2. CANCELLED,值为1,表示当前的线程被取消;

3. SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark;

4. CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中;

5. PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行;

不同的自定义同步器竞争共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了 。自定义同步器实现时主要实现以下几种方法:

  • isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
  • tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
  • tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
  • tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但
  • 没有剩余可用资源;正数表示成功,且有剩余资源。
  • tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。

同步等待队列

AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人发明的一种 基于双向链表数据结构的队列 是FIFO先进先出线程等待队列 ,Java中的CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。 AQS 依赖CLH同步队列来完成同步状态的管理:

  • 当前线程如果获取同步状态失败时,AQS则会将当前线程已经等待状态等信息构造成一个节点(Node)并将其加入到CLH同步队列,同时会阻塞当前线程
  • 当同步状态释放时,会把首节点唤醒(公平锁),使其再次尝试获取同步状态。
  • 通过signal或signalAll将条件队列中的节点转移到同步队列。(由条件队列转化为同步队列

条件等待队列

  • AQS中条件队列是使用单向列表保存的,用nextWaiter来连接:
  • 调用await方法阻塞线程; 当前线程存在于同步队列的头结点,调用await方法进行阻塞(从同步队列转化到条件队列

Condition接口详解

1. 调用Condition#await方法 会释放当前持有的锁,然后阻塞当前线程,同时向Condition队列尾部添加一个节点 ,所以调用Condition#await方法的时候必须持有锁。

2. 调用Condition#signal方法会 将Condition队列的首节点移动到阻塞队列尾部,然后唤醒因调用Condition#await方法而阻塞的线程 (唤醒之后这个线程就可以去竞争锁了),所以调用Condition#signal方法的时候必须持有锁,持有锁的线程唤醒被因调用Condition#await方法而阻塞的线程

ReentrantLock

ReentrantLock是一种基于AQS框架的应用实现 ,是JDK中的一种线程并发访问的同步手段,它的功能类似于synchronized 是一种互斥锁,可以保证线程安全 。相对于 synchronized,ReentrantLock具备如下特点:

  • 可中断
  • 可以设置超时时间
  • 可以设置为公平锁
  • 支持多个条件变量
  • 与 synchronized 一样,都支持可重入

synchronized和ReentrantLock的区别:

  • synchronized关键字,是JVM层次的锁实现,ReentrantLock是类,是JDK层次基于AQS的锁实现;二者都是可重入的独占锁。
  • synchronized的锁状态是无法在代码中直接判断的,但是ReentrantLock可以通过 ReentrantLock#isLocked判断;
  • synchronized自动加解锁,ReentrantLock要手动加解锁,它的操作更加灵活。
  • synchronized是非公平锁,ReentrantLock是可以是公平也可以是非公平的;ReentrantLock要保证公平性也会引入额外的开销,导致吞吐量下降,慎用。
  • synchronized是不可以被中断的,而ReentrantLock#lockInterruptibly方法是可以被中断的;
  • 在发生异常时synchronized会自动释放锁,而ReentrantLock需要开发者在finally块中显示释放锁;
  • ReentrantLock获取锁的形式有多种:如立即返回是否成功的tryLock(),以及等待指定时长的获取,更加灵活;
  • synchronized在特定的情况下对于已经在等待的线程是后来的线程先获得锁(回顾一下sychronized的唤醒策略),而ReentrantLock对于已经在等待的线程是先来的线程先获得锁;
  • 在低竞争情况下synchronized的性能优于ReentrantLock。在高并发下,synchronized操作monitor涉及线程的用户态、内核态的切换,性能不如ReentrantLock。

ReentrantLock的使用

同步执行,类似于synchronized

private static  int sum = 0;
    private static Lock lock = new ReentrantLock();
    //private static TulingLock lock = new TulingLock();
    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 3; i++) {
            Thread thread = new Thread(()->{
                //加锁
                lock.lock();
                try {
                    // 临界区代码
                    // TODO 业务逻辑:读写操作不能保证线程安全
                    for (int j = 0; j < 10000; j++) {
                        sum++;
                    }
                } finally {
                    // 解锁
                    lock.unlock();
                }
            });
            thread.start();
        }
        Thread.sleep(2000);
        System.out.println(sum);
    }

可重入

public static ReentrantLock lock = new ReentrantLock();
    public static void main(String[] args) {
        method1();
    }
    public static void method1() {
        lock.lock();
        try {
            log.debug("execute method1");
            method2();
        } finally {
            lock.unlock();
        }
    }
    public static void method2() {
        lock.lock();
        try {
            log.debug("execute method2");
            method3();
        } finally {
            lock.unlock();
        }
    }
    public static void method3() {
        lock.lock();
        try {
            log.debug("execute method3");
        } finally {
            lock.unlock();
        }
    }

可中断

ReentrantLock lock = new ReentrantLock();
        Thread t1 = new Thread(() -> {
            log.debug("t1启动...");
            try {
                lock.lockInterruptibly();
                try {
                    log.debug("t1获得了锁");
                } finally {
                    lock.unlock();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
                log.debug("t1等锁的过程中被中断");
            }
        }, "t1");
        lock.lock();
        try {
            log.debug("main线程获得了锁");
            t1.start();
            //先让线程t1执行
            Thread.sleep(1000);
            t1.interrupt();
            log.debug("线程t1执行中断");
        } finally {
            lock.unlock();
        }

锁超时

ReentrantLock lock = new ReentrantLock();
        Thread t1 = new Thread(() -> {
            log.debug("t1启动...");
            // 注意: 即使是设置的公平锁,此方法也会立即返回获取锁成功或失败,公平策略不生效
//            if (!lock.tryLock()) {
//                log.debug("t1获取锁失败,立即返回false");
//                return;
//            }
            //超时
            try {
                if (!lock.tryLock(1, TimeUnit.SECONDS)) {
                    log.debug("等待 1s 后获取锁失败,返回");
                    return;
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
                return;
            }
            try {
                log.debug("t1获得了锁");
            } finally {
                lock.unlock();
            }
        }, "t1");
        lock.lock();
        try {
            log.debug("main线程获得了锁");
            t1.start();
            //先让线程t1执行
            Thread.sleep(2000);
        } finally {
            lock.unlock();
        }

公平锁

//ReentrantLock lock = new ReentrantLock(true); //公平锁
        ReentrantLock lock = new ReentrantLock(); //非公平锁
        for (int i = 0; i < 500; i++) {
            new Thread(() -> {
                lock.lock();
                try {
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    log.debug(Thread.currentThread().getName() + " running...");
                } finally {
                    lock.unlock();
                }
            }, "t" + i).start();
        }
        // 1s 之后去争抢锁
        Thread.sleep(1000);
        for (int i = 0; i < 500; i++) {
            new Thread(() -> {
                lock.lock();
                try {
                    log.debug(Thread.currentThread().getName() + " running...");
                } finally {
                    lock.unlock();
                }
            }, "强行插入" + i).start();
        }

条件变量

private static ReentrantLock lock = new ReentrantLock();
    private static Condition cigCon = lock.newCondition();
    private static Condition takeCon = lock.newCondition();
    private static boolean hashcig = false;
    private static boolean hastakeout = false;
    //送烟
    public void cigratee(){
        lock.lock();
        try {
            while(!hashcig){
                try {
                    log.debug("没有烟,歇一会");
                    cigCon.await();
                }catch (Exception e){
                    e.printStackTrace();
                }
            }
            log.debug("有烟了,干活");
        }finally {
            lock.unlock();
        }
    }
    //送外卖
    public void takeout(){
        lock.lock();
        try {
            while(!hastakeout){
                try {
                    log.debug("没有饭,歇一会");
                    takeCon.await();
                }catch (Exception e){
                    e.printStackTrace();
                }
            }
            log.debug("有饭了,干活");
        }finally {
            lock.unlock();
        }
    }
    public static void main(String[] args) {
        ReentrantLockDemo6 test = new ReentrantLockDemo6();
        new Thread(() ->{
            test.cigratee();
        }).start();
        new Thread(() -> {
            test.takeout();
        }).start();
        new Thread(() ->{
            lock.lock();
            try {
                hashcig = true;
                log.debug("唤醒送烟的等待线程");
                cigCon.signal();
            }finally {
                lock.unlock();
            }
        },"t1").start();
        new Thread(() ->{
            lock.lock();
            try {
                hastakeout = true;
                log.debug("唤醒送饭的等待线程");
                takeCon.signal();
            }finally {
                lock.unlock();
            }
        },"t2").start();
    }

ReentrantLock源码

加锁:

  1.    如果是非公平锁,尝试CAS(不自旋)将state由0改为1,如果成功,成功后将重入线程设置为当前线程。重入数加1。如果不成功,则再次判断state是否等于0,如果等于则再次尝试加锁,不等于则判断是否是重入,是则重入数加1,获取锁成功。如果失败则将线程放入同步等待队列,挂起线程。如果是公平锁,则是直接尝试加锁。即ReentrantLock是悲观锁,线程竞争锁失败也会被挂起

解锁:

  1.    将state-1,如果改后为0,直接将重入线程设置为null。
  2.    state=0时调用unsafe.park()唤起等待队列中的一个线程去竞争锁。
相关文章
|
2月前
|
Java 编译器
synchronized原理
synchronized原理
|
2月前
|
安全 Java
Java并发编程:Synchronized及其实现原理
Java并发编程:Synchronized及其实现原理
29 4
|
10月前
|
Java 编译器
解密Java多线程中的锁机制:CAS与Synchronized的工作原理及优化策略
解密Java多线程中的锁机制:CAS与Synchronized的工作原理及优化策略
|
11天前
|
存储 Java
Java并发编程 Synchronized原理
Java并发编程 Synchronized原理
12 0
|
2月前
|
安全 Java
ReentrantLock 原理你都知道吗?
通过以上步骤和示例代码,你应该对 ReentrantLock 的工作原理有了清晰的理解。欢迎关注威哥爱编程,一起学习成长。
|
2月前
|
存储 安全 Java
Synchronized锁工作原理
Synchronized锁工作原理
|
8月前
图解ReentrantLock底层公平锁和非公平锁实现原理
图解ReentrantLock底层公平锁和非公平锁实现原理
87 0
|
安全 Java 大数据
深入探究 ReentrantLock 的应用和原理
深入探究 ReentrantLock 的应用和原理
132 0
深入探究 ReentrantLock 的应用和原理
|
Java API 调度
synchronized 和 ReentrantLock 的实现原理是什么?它们有什么区别
synchronized 和 ReentrantLock 的实现原理是什么?它们有什么区别
64 0
|
Java
synchronized原理剖析
synchronized原理剖析
89 0

热门文章

最新文章