【动态规划】 【字典树】C++算法:472 连接词

简介: 【动态规划】 【字典树】C++算法:472 连接词

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总 字典树

LeetCode472 连接词

给你一个 不含重复 单词的字符串数组 words ,请你找出并返回 words 中的所有 连接词 。

连接词 定义为:一个完全由给定数组中的至少两个较短单词(不一定是不同的两个单词)组成的字符串。

示例 1:

输入:words = [“cat”,“cats”,“catsdogcats”,“dog”,“dogcatsdog”,“hippopotamuses”,“rat”,“ratcatdogcat”]

输出:[“catsdogcats”,“dogcatsdog”,“ratcatdogcat”]

解释:“catsdogcats” 由 “cats”, “dog” 和 “cats” 组成;

“dogcatsdog” 由 “dog”, “cats” 和 “dog” 组成;

“ratcatdogcat” 由 “rat”, “cat”, “dog” 和 “cat” 组成。

示例 2:

输入:words = [“cat”,“dog”,“catdog”]

输出:[“catdog”]

提示:

1 <= words.length <= 104

1 <= words[i].length <= 30

words[i] 仅由小写英文字母组成。

words 中的所有字符串都是 唯一 的。

1 <= sum(words[i].length) <= 105

动态规划+字典树

分以下几步:

一,将所有单词存到字典树中。

二,枚举各单词s=word[i],如果s[0,j)是字典树的叶子节点,则将j放到dp[i]中。

三,对dp[i]排序,出掉重复。

四,交换pre,dp。

五,如果pre[i]存在words[i].length,删除之。

六,循环处理pre,直到pre[i]全部为空。

七, for(j ;pre[i]) 如果字典树中存在words[i][j,k)且是叶子节点。将k加到dp[i]中。

八,对dp[i]排序,出掉重复。

九,交换pre,dp。

十,如果pre[i]存在wrods[i].length,将words[i]放到结果中,并清空pre[i]。

封装的字典树

template<class TData=char, int iTypeNum = 26, TData cBegin = 'a'>
class CTrieNode
{
public:
  CTrieNode* AddChar(TData ele,int& iMaxID)
  {
#ifdef _DEBUG
    if ((ele < cBegin) || (ele >= cBegin + iTypeNum))
    {
      return nullptr;
    }
#endif
    const int index = ele - cBegin;
    auto ptr = m_vPChilds[ele - cBegin];
    if (!ptr)
    {
      m_vPChilds[index] = new CTrieNode();
#ifdef _DEBUG
      m_vPChilds[index]->m_iID = ++iMaxID;
      m_childForDebug[ele] = m_vPChilds[index];
#endif
    }
    return m_vPChilds[index];
  }
  CTrieNode* GetChild(TData ele)const
  {
#ifdef _DEBUG
    if ((ele < cBegin) || (ele >= cBegin + iTypeNum))
    {
      return nullptr;
    }
#endif
    return m_vPChilds[ele - cBegin];
  }
protected:
#ifdef _DEBUG
  int m_iID = -1;
  std::unordered_map<TData, CTrieNode*> m_childForDebug;
#endif
public:
  int m_iLeafIndex = -1;
protected:
  CTrieNode* m_vPChilds[iTypeNum] = { nullptr };
};
template<class TData = char,int iTypeNum = 26, TData cBegin = 'a'>
class CTrie
{
public: 
  int GetLeadCount()
  {
    return m_iLeafCount;
  }
  template<class IT>
  int Add(IT begin, IT end)
  {
    auto pNode = &m_root;
    for (; begin != end; ++begin)
    {
      pNode = pNode->AddChar(*begin,m_iMaxID);
    }
    if (-1 == pNode->m_iLeafIndex)
    {
      pNode->m_iLeafIndex = m_iLeafCount++;
    }
    return pNode->m_iLeafIndex;
  }
  template<class IT>
  CTrieNode<TData, iTypeNum, cBegin>* Search(IT begin, IT end)
  {
    auto ptr = &m_root;
    for (; begin != end; ++begin)
    {
      ptr = ptr->GetChild(begin);
      if (nullptr == ptr)
      {
        return nullptr;
      }
    }
    return ptr;
  }
  CTrieNode<TData, iTypeNum, cBegin> m_root;
protected:  
   int m_iMaxID = 0;
   int m_iLeafCount = 0;  
};

核心代码

class Solution {
public:
  vector<string> findAllConcatenatedWordsInADict(vector<string>& words) {
    CTrie preTrie;
    for (const auto& s : words)
    {
      preTrie.Add(s.begin(), s.end());  
    }
    vector<vector<int>> pre(words.size(),vector<int>(1));
    auto Do = [&]()
    {
      vector<vector<int>> dp(words.size());
      for (int i = 0; i < pre.size(); i++)
      {
        for (const auto& j : pre[i])
        {     
          auto p1 = &preTrie.m_root;
          for (int k = j; k < words[i].length(); k++)
          {
            p1 = p1->GetChild(words[i][k]);
            if (nullptr == p1)
            {
              break;
            }
            if (-1 != p1->m_iLeafIndex)
            {
              dp[i].emplace_back(k + 1);
            }
          }
        }
        sort(dp[i].begin(), dp[i].end());
        dp[i].erase(std::unique(dp[i].begin(), dp[i].end()), dp[i].end());
      }
      pre.swap(dp);
    };
    Do();
    for (int i = 0 ; i < pre.size(); i++ )
    {
      if (pre[i].size() && (pre[i].back() == words[i].length()))
      {
        pre[i].pop_back();
      }
    }
    vector<string> vRet;
    bool bDo = true;
    while (bDo)
    {
      Do();
      bDo = false;
      for (int i = 0; i < pre.size(); i++)
      {
        if (pre[i].size())
        {
          bDo = true;
        }
        if (pre[i].size() && (pre[i].back() == words[i].length()))
        {
          vRet.emplace_back(words[i]);
          pre[i].clear();
        }
      }
    }
    return vRet;
  }
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<string> words;
  {
    Solution sln;
    words = { "cat","dog","catdog" };
    auto res = sln.findAllConcatenatedWordsInADict(words);
    Assert(vector<string>{"catdog"}, res);
  }
  {
    Solution sln;
    words = { "cat","cats","catsdogcats","dog","dogcatsdog","hippopotamuses","rat","ratcatdogcat" };
    auto res = sln.findAllConcatenatedWordsInADict(words);
    Assert(vector<string>{"catsdogcats", "dogcatsdog", "ratcatdogcat"}, res);
  }
  {
    Solution sln;
    words = { "vhsgzvwiixxaob","fso","qnebmfl","ooetjiz","lq","msxphqdgz","mqhoggvrvjqrp","xbhkkfg","zxjegsyovdrmw","jav","mshoj","ax","biztkfomz","hujdmcyxdqteqja","gqgsomonv","reqqzzpw","lihdnvud","lznfhbaokxvce","fhxbldylqqewdnj","rlbskqgfvn","lfvobeyolyy","v","iwh","fpbuiujlolnjl","gvwxljbo","ypaotdzjxxrsc","mwrvel","umzpnoiei","ogwilaswn","yw","egdgye","hsrznlzrf","mwdgxaigmxpy","yaqgault","dtlg","cyvfiykmkllf","zxqyhvizqmamj","lvvgoifltzywueyp","abinmy","ppzaecvmx","qsmzc","iddymnl","uskihek","evxtehxtbthq","jvtfzddlgch","czohpyewf","ufzazyxtqxcu","brxpfymuvfvs","xrrcfuusicc","aqhlswbzievij","rv","udvmara","upityz","fecd","suxteeitxtg","dfuydrtbfypbn","cypqodxr","wikfuxwjht","jrliuaifpp","vkmxys","wvpfyfpkvgthq","rmajxis","jncxgviyu","av","nmhskodmidaj","lkfrimprrhen","uip","hstyopbvuiqc","p","vwduwmjpblqo","fnxwgqtvwztje","xwnbcuggl","iehimvoymyjasin","spsqiu","flhyfac","mqrbq","pstsxhplrrmbeddv","hnegtuxx","alsyxezjwtlwmxv","jtxytykkcku","bhhlovgcx","xhhivxnutkx","had","aysulvk","m","anhsyxli","jdkgfc","potn","lcibpxkidmwexp","gwoxjicdkv","tltienw","ngiutnuqbzi","o","tzlyb","vumnwehj","os","np","lhv","uzvgyeette","ipfvr","lpprjjalchhhcmh","k","pciulccqssaqgd","tp","dmzdzveslyjad","wtsbhgkd","eouxbldsxzm","vhtonlampljgzyve","xhnlcrldtfthul","xhflc","upgei","rlaks","yfqvnvtnqspyjbxr","phouoyhvls","voibuvbhhjcdflvl","rgorfbjrofokggaf","dqhqats","zchpicyuawpovm","yzwfor","koat","pybf","fhdzsbiyjld","gznfnqydisn","xz","po","tcjup","wygsnxk","kqlima","fgxnuohrnhg","publurhztntgmimc","zuufzphd","iucrmmmjqtcey","wnnbq","rghzyz","ukjqsjbmp","mdtrgv","vyeikgjdnml","kxwldnmi","apzuhsbssaxj","tkbkoljyodlipof","nkq","ktwtj","vgmkgjwle","t","agylw","vomtuy","jbtvitkqn","vtdxwrclpspcn","rdrls","yxfeoh","upj","myctacn","fdnor","ahqghzhoqprgkym","phiuvdv","jp","fdgpouzjwbq","hqoyefmugjvewhxu","qfzwuwe","fnsbijkeepyxry","oja","qthkcij","zpmqfbmnr","ybaibmzonzqlnmd","svo","gjftyfehik","jfrfgznuaytvaegm","aljhrx","odjq","ogwaxrssjxgvnka","zaqswwofedxj","lugpktauixp","dc","odknlbvxrs","jeobu","vqythyvzxbcgrlbg","hwc","erpbaxq","ujxcxck","rrklkb","wlrwyuy","zmg","yyhga","xwdbycdu","htedgvsrhchox","wr","suhesetv","jonqwhkwezjvjgg","sqqyrxtjkcalswq","hvyimhe","pjzdkmoue","zbphmgoxq","lbdlcumdgixjbcq","ztzdjqmadthtdmv","qcagsyqggcf","if","jpjxcjyi","chyicqibxdgkqtg","iwpdklhum","wljmg","micmun","npdbamofynykqv","ijsnfkpfy","lmq","oyjmeqvhcrvgm","mqopusqktdthpvz","fz","r","qbsqtipq","nxtsnason","xbpipyhh","topsuqomfjrd","islif","gbndakaq","bwnkxnwpzeoohlx","hrtbfnq","fguvomeepxoffg","mat","dzfpfnwbfuj","onlvy","cwcchvsasdylb","rxfcztzqopdi","ybrhodjn","oqkijy","ncvrjo","dphbfaal","xgtpdtkz","sebevsopjvciwljf","rcumyacqdapwczen","mabkapuoud","pbozezeygljfftvy","bvazmzbndl","vl","qiaixdtbhqvlzd","ffjfb","svthrfmkoxbho","cvet","ucgqyvopafyttrh","lbgihet","naiqyufxffdw","vruh","uz","ukffmudygjavem","dccamymhp","wofwgjkykm","fbuujzxhln","kmm","lzandlltowjpwsal","fapfvrmezbsjxs","wiw","sc","soqlh","hzaplclkwl","gcdqbcdwbwa","gadgt","pgowefka","juffuguqepwnfh","nbuinl","cpdxf","sox","fq","lfnrhgsxkhx","xrcorfygjxpi","mwtqjwbhgh","loc","fkglorkkvx","nlzdhucvayrz","azefobxutitrf","rlrstkcbtikklmh","ggk","sbphcejuylh","nraoenhd","zngyodiqlchxyycx","rrbhfwohfv","krzolrglgn","cpjesdzy","yoifoyg","hqqevqjugi","ahmv","xgaujnyclcjq","evhyfnlohavrj","byyvhgh","hyw","kedhvwy","ysljsqminajfipds","rglnpxfqwu","cibpynkxg","su","mbntqrlwyampdg","nig","ldhlhqdyjcfhu","jfymrbafmyoc","tyjmnhlfnrtz","dlazixtlxyvm","fbiguhsfuqo","rhymsno","rkbdlchs","ocbbwwd","astaiamnepwkya","mplirup","edkxjq","g","exlwulswtvot","tlnc","vnrrzerz","ygeraoozbtt","yyifkin","eo","ua","qgztvqdolf","rlzddjzcshvd","khxkdxflwxme","kk","zylbhoaac","cw","iizic","gcdxstpz","kjwdqeg","earjrncmmkdel","kbesuhquepj","nrzbllldgdmyrpgl","hllwnqozf","djpchowhwevbqvjj","zsmhylnjpktb","pxnktxkm","fxwiaqqb","qjwufmwresfsfaok","aa","d","iobioqm","svjgzk","khbzp","euexyudhrioi","yqsj","ngrwqpoh","rwuvd","eruffmlg","bxzovyew","faz","pmvfvyguqdi","jlxnoixsy","hyfrdngjf","ly","eibcapetpmeaid","tpnwwiif","pfgsp","kvhhwkzvtvlhhb","pjxurgqbtldims","rncplkeweoirje","akyprzzphew","wyvfpjyglzrmhfqp","ubheeqt","rmbxlcmn","taqakgim","apsbu","khwnykughmwrlk","vtdlzwpbhcsbvjno","tffmjggrmyil","schgwrrzt","mvndmua","nlwpw","glvbtkegzjs","piwllpgnlpcnezqs","xkelind","urtxsezrwz","zechoc","vfaimxrqnyiq","ybugjsblhzfravzn","btgcpqwovwp","zgxgodlhmix","sfzdknoxzassc","wgzvqkxuqrsqxs","dwneyqisozq","fg","vhfsf","uspujvqhydw","eadosqafyxbmzgr","tyff","blolplosqnfcwx","uwkl","puenodlvotb","iizudxqjvfnky","cjcywjkfvukvveq","jrxd","igwb","dftdyelydzyummmt","uvfmaicednym","oai","higfkfavgeemcgo","naefganqo","iqebfibigljbc","ulicojzjfrc","igxprunj","cymbrl","fqmwciqtynca","zjyagi","mzuejrttefhdwqc","zyiurxvf","wrjxffzbjexsh","wrxw","mhrbdxjwi","htknfa","wfrvxqdkhbwwef","vqsghhhutdget","cwupzrts","hbjnb","wpccoa","nx","howbzhaoscgyk","bilt","wqqatye","zceuuwg","jxzon","kkfj","bwsezd","ifdegsyjtswselk","xweimxlnzoh","tqthlftjblnpht","ww","ss","b","jmruuqscwjp","nxbk","wd","cqkrtbxgzg","xhppcjnq","cfq","tkkolzcfi","wblxki","ijeglxsvc","kcqjjwcwuhvzydm","gubqavlqffhrzz","hiwxrgftittd","caybc","ncsyjlzlxyyklc","poxcgnexmaajzuha","dhaccuualacyl","mtkewbprs","oncggqvr","sqqoffmwkplsgbrp","ioajuppvqluhbdet","dzwwzaelmo","afumtqugec","wglucmugwqi","zveswrjevfz","nxlbkak","pzcejvxzeoybb","fd","vewj","ivws","zjhudtpqsfc","zcmukotirrxx","zksmx","umofzhhowyftz","zbotrokaxaryxlk","ueolqk","dxmzhoq","zvu","cjl","esfmqgvxwfy","npbep","vbgjtbv","poeugoqynkbfiv","fewjjscjrei","yqssxzsydgllfzmo","urxkwcypctjkabi","wqtldwhjouas","tovdtkr","onzgeyddkqwuhnim","ffxviyvsktqrfa","qujhd","pvcz","hiyjlkxmeplnrvxg","hdykehkefp","vepcxhozpjxtreyn","liguhuxudbnh","f","ordxzm","klgohcmmbukz","yrmooliaobbnlap","dutnbetocxylcey","ywdsjegd","cr","blbxhjsgcuoxmqft","ngzdc","srfyjjumcbxole","dazwzwtdjoyuqeqj","xazjarqgfm","fxyfqbeoktcc","qrsjchxp","iltaqzawhgu","sgenjcfxr","yfikp","dvwhbyumthkiktb","walsx","jyajrkcvysicisab","brdeumb","tviihjwxdcz","dnrrgmem","ydgxlrjzucxyid","cdvdpvjlagwmg","ngnpxjkxims","gvyhnchlimsxc","w","jtizpezjl","qe","rjzv","vhnqvi","qm","iedzqswrsnfmnn","lt","utqfcqyrrwm","wtelvsqrru","fjwrhjcrtbcytn","qmqxceuohpiffaq","rmoybqjjgdyo","pmxttqftypfexlv","tg","qa","iqbqjlnpbf","kgaynkddbzllecd","tccvslp","curkxfoimnw","fvnyqkzlheruxr","iiygnzfov","coqs","oa","eiu","vzemmxtklis","lxu","nrwsjaxzwmh","tdayz","oxbbemejgosgcynf","ykbcn","hesvnctfvdsp","ku","rjhykpadahbhj","at","sxlngbtxmqr","wqrom","qzyabzrco","rbbyklndcqdj","cnsmgmwmpbgjq","krvnaf","qrwfajnfahyqocdb","fnlaozmff","vmoymbmytjvfcgt","cijyy","jdgwjbztl","swmalgbgpaplqgz","hfl","typttkrpfvx","tkzpzrscwbx","bwfqqvjcukjbsg","nxqmxr","x","eyavnz","il","dhthp","eyelg","npsoqsw","reogbmveofvusdsx","jvdrjkhxkq","qzjbrpljwuzpl","czqeevvbvcwh","vzuszqvhlmapty","yu","yldwwgezlqur","vorxwgdtgjilgydq","pknt","bgihl","ckorgrm","ixylxjmlfv","bpoaboylced","zea","igfagitkrext","ipvqq","dmoerc","oqxbypihdv","dtjrrkxro","rexuhucxpi","bvmuyarjwqpcoywa","qwdmfpwvamisns","bhopoqdsref","tmnm","cre","ktrniqwoofoeenbz","vlrfcsftapyujmw","updqikocrdyex","bcxw","eaum","oklsqebuzeziisw","fzgyhvnwjcns","dybjywyaodsyw","lmu","eocfru","ztlbggsuzctoc","ilfzpszgrgj","imqypqo","fump","sjvmsbrcfwretbie","oxpmplpcg","wmqigymr","qevdyd","gmuyytguexnyc","hwialkbjgzc","lmg","gijjy","lplrsxznfkoklxlv","xrbasbznvxas" };
    auto res = sln.findAllConcatenatedWordsInADict(words);
    Assert(vector<string>{"rv", "tp", "koat", "po", "mdtrgv", "wr", "mat", "kmm", "ggk", "kk", "fg", "wrxw", "bilt", "ww", "nxbk", "wd", "fd", "tovdtkr", "ordxzm", "tg", "nxqmxr"}, res);
  }
}

优化

b[j] 表示words[i][0,j) 是否能由一个或多个单词拼接。

Do(j) 的功能: b[j]为true,words[i][j,x)能和那些单词匹配。

Do(0)后,b[s.length()] = 0;是因为至少要拼接两次。

class Solution {
public:
  vector<string> findAllConcatenatedWordsInADict(vector<string>& words) {
    CTrie preTrie;
    for (const auto& s : words)
    {
      preTrie.Add(s.begin(), s.end());  
    }
    int b[31] = { 0 };
    vector<string> vRet;
    for (const auto& s : words)
    {     
      auto Do = [&](int inx)
      {
        auto p1 = &preTrie.m_root;
        for (int k = inx; k < s.length(); k++)
        {
          p1 = p1->GetChild(s[k]);
          if (nullptr == p1)
          {
            break;
          }
          if (-1 != p1->m_iLeafIndex)
          {
            b[k + 1] = true;
          }         
        }
      };
      memset(b, 0, sizeof(b));
      Do(0);
      b[s.length()] = 0;
      for (int i = 1; i < s.length(); i++)
      {
        if (b[i])
        {
          Do(i);
        }
      }
      if (b[s.length()])
      {
        vRet.emplace_back(s);
      }
    }   
    return vRet;
  }
};

2023年1月

class Solution {

public:

vector findAllConcatenatedWordsInADict(vector& words) {

std::unordered_set setHas;

for (const auto& s : words)

{

setHas.insert(s);

}

vector vRet;

for (const auto& s : words)

{

if (Test(s, setHas))

{

vRet.push_back(s);

}

}

return vRet;

}

bool Test(const string& s, const std::unordered_set& setHas)

{

std::vector preLens;

preLens.push_back(0);

while (preLens.size())

{

std::vector lens;

for (const auto& pos : preLens)

{

for (int len = 1; pos + len - 1 < s.length(); len++)

{

if (setHas.count(s.substr(pos, len)))

{

if ((0 == pos) && (s.length() == len))

{

continue;

}

if (pos + len == s.length())

{

return true;

}

lens.push_back(pos + len);

}

}

}

preLens.swap(lens);

}

return false;
 }

};


相关文章
|
4月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
631 1
|
8月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
196 2
|
9月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
8月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
218 17
|
7月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
206 4
|
6月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
189 0
|
7月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
230 0
|
9月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
199 4
|
10月前
|
存储 算法 安全
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
236 8
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
397 0

热门文章

最新文章