计算机网络:思科实验【4-生成树协议STP及虚拟局域网VLAN】

简介: 计算机网络:思科实验【4-生成树协议STP及虚拟局域网VLAN】



实验目的

1 加深对交换机生成树协议STP的理解。

2 了解如何划分VLAN以及VLAN的作用。

3 了解虚拟局域网VLAN的特性

实验环境

Cisco Packet Tracer模拟器

实验内容

交换机生成树协议STP

1)第一步:构建网络拓扑:在逻辑工作空间上,拖动4台以太网交换机并将它们连接成环路,如图所示。

2)第二步: 观察到交换机的连接线中许多都是呈现橙色,表示此时线路处于阻塞状态,鼠标来回切换实时模式与仿真模式,网络拓扑最终如图所示。观察到左上角的交换机右边的连接线为橙色,说明此条线路处于阻塞状态,这是因为交换机为了避免出现环路,即使该线路在物理意义上为环路,但是从逻辑意义上,环路并没有出现。

3)第三步:再次构建网络拓扑。在逻辑工作空间上拖动两台主机分别与两台交换机相连接,如图所示。

4)第四步:设置IP地址。鼠标左键单击要设置的设备,选择桌面,选择IP设置,如图所示

5)验证主机之间的连通性。切换到实时模式。鼠标单击主机1,选择桌面,选择命令提示符,如图所示。

输入”ping 192168.0.2”,结果如图所示。

收到主机2的回复代表主机之间连通性完好。鼠标单击主机2,选择桌面,选择命令提示符,如图所示。

输入”ping 192.168.0.1”,结果如图所示。收到主机1的回复代表主机之间连通性完好。

6)第六步:尝试断开一台交换机的连接并再次验证主机的连通性。鼠标点击交换机6,选择配置,选择FastRthenet0/2,将接口状态切换为关,如图所示。

此时交换机6端口2的连接已关闭,呈现橙色状态,如图所示。

再次点击主机1,选择桌面,选择命令提示符,输入”ping 192.168.0.2”,结果如图所示。观察到4ping请求都超时,说明主机之间没有连通性。

7)第七步:观察到网络拓扑中,原本阻塞的端口已经恢复正常,如图所示。这是因为我们人为关闭了端口使线路不再连通,各交换机的通过生成树协议STP共同运作发现了这一点,于是将端口打开,使线路再次联通。

再次点击主机1,选择桌面,选择命令提示符,输入”ping 192.168.0.2”,结果如图所示。收到回复代表主机之间连通性完好。

8)第八步:打开之前人为关闭的端口。鼠标点击交换机6,选择配置,选择FastEthenet0/2,将端口状态切换为开。如图所示。

观察网络拓扑,发现原本打开的线路再次被堵塞,如图所示。这是因为交换机在生成树协议STP的共同运作下,发现了人为打开的端口,此时已经存在环路,故交换机将一处线路关闭。

9)第九步:关闭交换机的生成树协议。鼠标点击交换机4,选择命令行界面,如图所示。

按下回车,输入”enable”以进入特权模式,输入”config”以进入全局配置模式,再次按下回车,输入”no spanning-tree vlan 1”以关闭该局域网中该交换机的生成树协议,如图所示。

按照次方式关闭其他交换机的生成树协议。再次观察网络拓扑,发现交换机已经形成了一个逻辑环路,如图所示。

10)第十步:在环路中发送广播帧。切换到仿真模式。鼠标选择复杂PDU,在目的IP地址中填入255.255.255.255,源IP地址填入主机IP192.168.0.1),序号与时间均填为1,如图所示。

该广播帧首先被发送到交换机1,交换机1将它们广播,交换机23收到再次广播,交换机4收到再次广播并将它们发送给交换机23,如图所示。此时环路内的帧一直在循环,严重浪费网络资源。

11)第十一步:验证主机之间的连通性。鼠标点击主机1,选择桌面,选择命令提示符,输入”ping 192.168.0.2”,结果如图所示。

请求超时说明主机并不连通。鼠标点击主机2,选择桌面,选择命令提示符,输入”ping 192.168.0.1”,结果如图所示。请求超时说明主机并不连通。这是因为环路中存在广播帧在循环转发,致使网络繁忙,正常通信受到影响。

虚拟局域网VLAN

1)第一步:构建网络拓扑。在逻辑工作空间上,拖动六个终端设备和一个交换机,用连接线把设备连接起来。如图所示。

2)第二步:设置IP地址。鼠标左键单击要设置的设备,选择桌面,选择IP设置,如图所示

3)第三步:使用注释表明IP地址及端口号。为了后续实验效果更加直观,鼠标选择注释,如图所示。为每台主机表明IP地址,为交换机的每个接口标明端口号,如图所示。

4)第四步:鼠标选择查看,点击交换机,选择”端口状态汇总表”,就可以查看各端口的详细信息,如图所示。可以看到,该交换机共有24个端口,其中有22个百兆端口、2个千兆端口,百兆端口中开启了六个;且所有的端口都属于同一个VLAN

5)第五步:验证属于同一个VLAN的六台主机属于同一个广播域。鼠标切换到仿真模式,在仿真面板中点击”全显/隐藏”隐藏所有协议,并点击过滤器只显示ICMP协议,如图所示。

鼠标选择复杂PDU让主机1发送一个广播PDU,目的IP地址应该填”255.255.255.255”,源IP地址填”192.168.0.1”,如图所示。

该广播PDU首先被发送到交换机,接着被广播发送到所有主机,如图所示。由此验证属于一个VLAN的主机属于同一个广播域。接着删除该事件。

6)第六步:划分VLAN。选择交换机,选择配置,选择VLAN数据库,如图所示。

VLAN号填入”2”,VLAN名称填入”VLAN2”,点击”添加”,此时我们创建了一个VLAN。接着,选择FastEthenet0/1,设置该端口的VLAN2,如图所示。FastEthenet0/2FastEthenet0/3都如此设置。

7)第七步:验证属于不同VLAN的主机属于不同的广播域。鼠标选择复杂PDU让主机1发送一个广播PDU,目的IP地址应该填”255.255.255.255”,源IP地址填”192.168.0.1”。该广播PDU首先被发送到交换机,接着,交换机将PDU发往主机23,如图所示。演示完毕后,将该事件删除。

8)第八步:使用命令行界面划分VLAN。鼠标点击交换机,选择命令行界面,输入”end”结束此前的操作,输入”exit”退出并再次按回车进入,如图所示。

输入”enable”进入特权模式,输入”config terminal”进入终端界面,输入回车,输入”VLAN 3”创建一个编号为3VLAN,输入”name vlan3”为该VLAN重新命名,输入”end”结束此次操作,输入”show vlan brief”查看所有的VLAN简短信息,结果如图所示。

接着我们将端口456划分到VLAN3中。输入”config terminal”进入终端配置模式,输入”interface range fastethernet 0/4 - 6”一次性选择三个端口,输入”switchport mode access”配置端口模式为”access”,输入”switchport access vlan 3”将端口划分到VLAN3,如图所示。

输入”end”结束此次操作,输入”show vlan brief”输出所有VLAN的简短信息,如图所示。观察到VLAN3中包含了端口456,说明此前的操作是成功的。

9)第九步:验证属于不同VLAN的主机属于不同的广播域。鼠标选择复杂PDU让主机1发送一个广播PDU,目的IP地址应该填”255.255.255.255”,源IP地址填”192.168.0.1”,如图所示。

该广播PDU首先被发送到交换机,接着,交换机将PDU发往主机23,如图所示。重复操作使主机4发送广播PDU,该广播PDU首先被发送到交换机,接着,交换机将PDU发往主机56。演示完毕后,将该事件删除。

10)第十步:验证不同VLAN的主机不可以进行通信。切换到实时模式,鼠标点击主机1,选择命令行界面,输入”ping 192.168.0.4”,结果如图所示。请求超时代表相互不可以通信。

11)第十一步:重新构建网络拓扑,如图所示。

12)第十二步:配置新主机的IP地址,如图所示。

13)第十三步:按照前文所介绍的划分VLAN的方法,将主机789划分为VLAN2,将主机101112划分为VLAN3。如图所示。

14)第十四步:两个交换机的端口的类型此时都是ACCESS类型,此类型端口在接收到PDU后,会检查PDUVLAN号,假如与自己的VLAN号匹配,则接收并转发,假如不匹配则丢弃。这显然不符合我们的要求。鼠标点击交换机1,选择配置,选择FastEthernet0/7,将模式切换为Trunk,如图所示。对于交换机2也进行类似的处理。对于Trunk模式,当PDUVLAN号与自己的VLAN号匹配时,会将PDUVLAN号去除并转发,当VLAN号与自己不匹配则会直接转发。

15)第十五步:鼠标选择复杂PDU让主机1发送一个广播PDU,目的IP地址应该填”255.255.255.255”,源IP地址填”192.168.0.1”,如图44所示。该广播帧首先被发送到交换机1中,接着交换机将其发送到主机23及交换机2,如图所示。

交换机2再将其发送给主机789,如图所示。删除原来的事件。

16)第十六步:鼠标选择复杂PDU让主机1发送一个广播PDU,目的IP地址应该填”255.255.255.255”,源IP地址填”192.168.0.4”。该广播帧首先被发送到交换机1中,接着交换机将其发送到主机56及交换机2,如图所示。

交换机2再将其发送给主机101112,如图所示。删除原来的事件。

实验体会

1 交换机在生成树协议STP的作用下会自动的识别环路并自动的设置线路的堵塞情况,避免产生广播帧无限循环的情况。

2 VLAN网络之间不能进行普通通信,这一点可以保证网络信息安全。且便于管理数量巨大的主机。

总结

无边的丝线,网罗天地间, 信息律动,编织着未来的领域。

电子雄心,携手共舞, 万象交融,数码之花灿烂。

时空交错,虚实相连, 网络之舞,激荡心弦。

无言的交流,电波悠扬, 互联的奇迹,在指尖绽放。

计算的魔力,解锁智慧之门, 网络如诗,奏响科技的赞歌。

渴望挑战计算机网络的学习路径和掌握进阶技术?不妨点击下方链接,一同探讨更多计算机网络的奇迹吧。我们推出了引领趋势的💻计网专栏:【Cisco Packet Tracer实验】 ,旨在深度探索计算机网络的实际应用和创新。🌐🔍

相关文章
|
3月前
|
数据采集 算法 数据挖掘
模块化控制协议(MCP)在网络中增强智能体执行效率的研究
随着Web3技术的迅速发展,去中心化应用和智能体在各种领域的应用逐渐增多。MCP(Modularized Control Protocol,模块化控制协议)作为一种增强智能体执行能力的关键技术,为Web3场景中的智能体提供了更强的灵活性和可扩展性。本文将探讨如何利用MCP技术提升智能体在Web3场景中的执行能力,并通过实例代码展示其实现路径。
219 22
|
24天前
|
运维 架构师 安全
二层协议透明传输:让跨域二层协议“无感穿越”多服务商网络
简介:本文详解二层协议透明传输技术,适用于企业网工、运营商及架构师,解决LLDP/LACP/BPDU跨运营商传输难题,实现端到端协议透传,提升网络韧性与运维效率。
|
3月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
83 4
|
5月前
|
安全 网络协议 Linux
Linux网络应用层协议展示:HTTP与HTTPS
此外,必须注意,从HTTP迁移到HTTPS是一项重要且必要的任务,因为这不仅关乎用户信息的安全,也有利于你的网站评级和粉丝的信心。在网络世界中,信息的安全就是一切,选择HTTPS,让您的网站更加安全,使您的用户满意,也使您感到满意。
146 18
|
5月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
118 4
|
6月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
182 22
|
6月前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
154 7
|
6月前
|
网络协议 数据安全/隐私保护 网络架构
|
7月前
|
缓存 网络协议 API
掌握网络通信协议和技术:开发者指南
本文探讨了常见的网络通信协议和技术,如HTTP、SSE、GraphQL、TCP、WebSocket和Socket.IO,分析了它们的功能、优劣势及适用场景。开发者需根据应用需求选择合适的协议,以构建高效、可扩展的应用程序。同时,测试与调试工具(如Apipost)能助力开发者在不同网络环境下优化性能,提升用户体验。掌握这些协议是现代软件开发者的必备技能,对项目成功至关重要。
|
10月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
226 17

热门文章

最新文章