Pydantic:强大的Python 数据验证库

简介: Pydantic:强大的Python 数据验证库

image.png

Pydantic

Pydantic 是一个在 Python 中用于数据验证和解析的第三方库。它提供了一种简单且直观的方式来定义数据模型,并使用这些模型对数据进行验证和转换。

Pydantic 的一些主要特性:

  1. 类型注解:Pydantic 使用类型注解来定义模型的字段类型。你可以使用 Python 内置的类型、自定义类型或者其他 Pydantic 提供的验证类型。
  2. 数据验证:Pydantic 自动根据模型定义进行数据验证。它会检查字段的类型、长度、范围等,并自动报告验证错误。你可以使用 ValidationError 异常来捕获验证错误。
  3. 模型转换:Pydantic 提供了从各种数据格式(例如 JSON、字典)到模型实例的转换功能。它可以自动将输入数据解析成模型实例,并保留类型安全性和验证规则。

Pydantic 使用前需要先进行安装。

pip install pydantic

Pydantic 基本操作

使用 Pydantic,可以定义一个模型类,该类需要继承 pydantic 中的 BaseModel 类,模型类描述了数据的结构和类型,并指定验证规则。

然后,可以使用这个模型类来验证输入的数据是否符合预期,并以类型安全的方式访问和操作数据。

from pydantic import BaseModel, ValidationError
class User(BaseModel):    
    name: str    
    age: int    
    email: str
try:    
    user = User(name="Alice", age="30", email="alice@example.com") 
except ValidationError as e:    
    print(e.json())

如果创建实例的数据不符合类型注解的要求,则会报 ValidationError 错误。

Pydantic 高级操作

Pydantic 还可以结合 typing 模块,进行默认值,可选字段属性等验证的高级操作。甚至还可以通过 EmailStr 类来直接验证邮件正确性,但该类依赖一个第三方模块,在使用前需要使用 pip install email-validator 进行安装后才可以使用。

from typing import Optional
from pydantic import BaseModel, EmailStr
class User(BaseModel):    
    name: str    
    age: int    
    email: EmailStr    
    phone: Optional[str] = None

user = User(name="Alice", age=30, email="alice@example.com")  # 有效
user = User(name="Alice", age=30, email="invalid_email")  # 错误:无效的电子邮件

Field 对象

Field函数提供了许多参数来定制字段的行为。以下是一些常用的参数:

  • ...:表示该字段是必填项。
  • default:定义字段的默认值。如果未提供该值,则默认为None,不能与 ... 同时使用。
  • min_lengthmax_length:针对字符串类型的字段定义最小和最大长度限制。
  • gtgeltle:针对数值类型的字段定义大于 gt、大于等于 ge、小于 lt 和小于等于 le 的限制。
from pydantic import BaseModel, EmailStr, ValidationError, Field
class User(BaseModel):    
    name: str = Field(..., min_length=1, max_length=10)    
    age: int = Field(..., ge=0, le=200)    
    email: EmailStr    
    phone: str = Field(default="13800138000", min_length=11, max_length=11)
user = None
try:    
    user = User(name="Tom", age=22, email="alice@example.com")
except ValidationError as e:    
    a = eval(e.json())    
    print(a[0]["msg"])
finally:    
    print(user)

数据转换

通过定义模型类,可以将通过网络传输或数据库查询的数据转换成模型类对象在程序中使用。

反之,也可以将处理过后的模型类对象转换成对应的字典或 JSON 数据进行存储或传输。

模型类转换为字典

使用 模型类.model_dump() 方法可以将一个模型类实例对象转换为字典类型数据。

from pydantic import BaseModel, EmailStr, Field
class User(BaseModel):    
    name: str = Field(..., min_length=1, max_length=10)    
    age: int = Field(..., ge=0, le=200)    
    email: EmailStr    
    phone: str = Field(default="13800138000", min_length=11, max_length=11)
user = User(name="Tom", age=22, email="alice@example.com")
data = User.model_dump(user)
print(data)
print(type(data))

模型类转换为JSON

使用 模型类.model_dump_json() 方法可以将一个模型类实例对象转换为 JSON 字符串。

from pydantic import BaseModel, EmailStr, Field
class User(BaseModel):    
    name: str = Field(..., min_length=1, max_length=10)    
    age: int = Field(..., ge=0, le=200)    
    email: EmailStr    
    phone: str = Field(default="13800138000", min_length=11, max_length=11)
user = User(name="Tom", age=22, email="alice@example.com")
data = User.model_dump_json(user)
print(data)
print(type(data))
相关文章
|
22天前
|
XML JSON 数据库
Python的标准库
Python的标准库
162 77
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
98 4
数据分析的 10 个最佳 Python 库
|
23天前
|
XML JSON 数据库
Python的标准库
Python的标准库
47 11
|
2月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
129 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
2月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
23天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
64 8
|
2月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
100 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
35 4
|
2月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
2月前
|
测试技术 Python
Python中的异步编程与`asyncio`库
Python中的异步编程与`asyncio`库