C++类与对象【对象的初始化和清理】

简介: C++类与对象【对象的初始化和清理】



C++类与对象

🎄1 对象的初始化和清理

  • 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全
  • C++中的面向对象来源于生活,每个对象也都会有初始设置以及 对象销毁前的清理数据的设置。
🥕1.1 构造函数和析构函数

对象的初始化和清理也是两个非常重要的安全问题

一个对象或者变量没有初始状态,对其使用后果是未知

同样的使用完一个对象或变量,没有及时清理,也会造成一定的安全问题

c++利用了构造函数析构函数解决上述问题,这两个函数将会被编译器自动调用,完成对象初始化和清理工作。

对象的初始化和清理工作是编译器强制要我们做的事情,因此如果我们不提供构造和析构,编译器会提供

编译器提供的构造函数和析构函数是空实现。

  • 构造函数:主要作用在于创建对象时为对象的成员属性赋值,构造函数由编译器自动调用,无须手动调用。
  • 析构函数:主要作用在于对象销毁前系统自动调用,执行一些清理工作。

构造函数语法:类名(){}

  1. 构造函数,没有返回值也不写void
  2. 函数名称与类名相同
  3. 构造函数可以有参数,因此可以发生重载
  4. 程序在调用对象时候会自动调用构造,无须手动调用,而且只会调用一次

析构函数语法: ~类名(){}

  1. 析构函数,没有返回值也不写void
  2. 函数名称与类名相同,在名称前加上符号 ~
  3. 析构函数不可以有参数,因此不可以发生重载
  4. 程序在对象销毁前会自动调用析构,无须手动调用,而且只会调用一次
class Person
{
public:
  //构造函数
  Person()
  {
    cout << "Person的构造函数调用" << endl;
  }
  //析构函数
  ~Person()
  {
    cout << "Person的析构函数调用" << endl;
  }
};
void test01()
{
  Person p;  //在栈上的数据,调用完之后就会被销毁
}
int main() {
  test01(); //对Person的创建都放在test01函数中,因此运行完这一行就会销毁对象
    //因此到此处构造函数和析构函数都会被调用
  system("pause");
  return 0;
}
//如果上面的main函数是这样写
int main() {
  
  Person p;
  //pause之前只会调用构造函数
  system("pause"); //pause之后才会调用析构函数
  return 0;
}
🥕1.2 构造函数的分类及调用

两种分类方式:

按参数分为: 有参构造和无参构造

按类型分为: 普通构造和拷贝构造

三种调用方式:

括号法

显示法

隐式转换法

示例:

//1、构造函数分类
// 按照参数分类分为 有参和无参构造   无参又称为默认构造函数
// 按照类型分类分为 普通构造和拷贝构造
class Person {
public:
  //无参(默认)构造函数
  Person() {
    cout << "无参构造函数!" << endl;
  }
  //有参构造函数
  Person(int a) {
    age = a;
    cout << "有参构造函数!" << endl;
  }
  //拷贝构造函数
  Person(const Person& p) {  //这是固定写法
    age = p.age;
    cout << "拷贝构造函数!" << endl;  //拷贝构造:传进来一个对象,将其所有属性都赋值给我
  }
  //析构函数
  ~Person() {
    cout << "析构函数!" << endl;
  }
public:
  int age;
};
//2、构造函数的调用
//调用无参构造函数
void test01() {
  Person p; //调用无参构造函数
}
//调用有参的构造函数
void test02() {
  //2.1  括号法,常用
  Person p1(10);
  //注意1:调用无参构造函数不能加括号,如果加了编译器认为这是一个函数声明
  //Person p2();
  //2.2 显式法
  Person p2 = Person(10);
  Person p3 = Person(p2);
  //Person(10)单独写就是匿名对象  当前行结束之后,马上析构。而不是等所在函数全部执行完之后再析构
  //2.3 隐式转换法
  Person p4 = 10; // 相当于Person p4 = Person(10); 
  Person p5 = p4; // 相当于Person p5 = Person(p4); 
  //注意2:不能利用 拷贝构造函数 初始化匿名对象 编译器认为是对象声明,也就是等价于Person p4;。这样就与之前的p4重定义了
  //Person p5(p4);
}
int main() {
  test01();
  //test02();
  system("pause");
  return 0;
}
🥕1.3 拷贝构造函数调用时机

C++中拷贝构造函数调用时机通常有三种情况

  • 使用一个已经创建完毕的对象来初始化一个新对象
  • 值传递的方式给函数参数传值
  • 以值方式返回局部对象

示例:

class Person {
public:
  Person() {
    cout << "无参构造函数!" << endl;
    mAge = 0;
  }
  Person(int age) {
    cout << "有参构造函数!" << endl;
    mAge = age;
  }
  Person(const Person& p) {
    cout << "拷贝构造函数!" << endl;
    mAge = p.mAge;
  }
  //析构函数在释放内存之前调用
  ~Person() {
    cout << "析构函数!" << endl;
  }
public:
  int mAge;
};
//1. 使用一个已经创建完毕的对象来初始化一个新对象
void test01() {
  Person man(100); //p对象已经创建完毕
  Person newman(man); //调用拷贝构造函数
  Person newman2 = man; //拷贝构造
  //Person newman3;
  //newman3 = man; //不是调用拷贝构造函数,赋值操作
}
//2. 值传递的方式给函数参数传值
//重要;相当于Person p1 = p;
void doWork(Person p1) {}
void test02() {
  Person p; //无参构造函数
  doWork(p); //这里面就是拷贝构造了
}
//3. 以值方式返回局部对象
Person doWork2()
{
  Person p1;
  cout << (int *)&p1 << endl; //打印P1的地址
  return p1;   //由于是值方式,因此会根据P1创建出一个新的对象并返回
}
void test03()
{
  Person p = doWork2(); //打印P的地址,和P1的地址是不一样的
  cout << (int *)&p << endl;
}
int main() {
  //test01();
  //test02();
  test03();
  system("pause");
  return 0;
}

注意:

无参调用时,不要写:

Person  person();

否则编译器会认为是一个函数声明

🥕1.4 构造函数调用规则

只要创建一个类,默认情况下,c++编译器至少给这个类添加3个函数(就算我们不写也会自动添加)

1.默认构造函数(无参,函数体为空)

2.默认析构函数(无参,函数体为空)

3.默认拷贝构造函数,对属性进行值拷贝

构造函数调用规则如下:

  • 如果用户定义有参构造函数,c++不在提供默认无参构造,但是会提供默认拷贝构造
  • 如果用户定义拷贝构造函数,c++不会再提供其他构造函数

示例:

class Person {
public:
  //无参(默认)构造函数
  Person() {
    cout << "无参构造函数!" << endl;
  }
  //有参构造函数
  Person(int a) {
    age = a;
    cout << "有参构造函数!" << endl;
  }
  //拷贝构造函数
  Person(const Person& p) {
    age = p.age;
    cout << "拷贝构造函数!" << endl;
  }
  //析构函数
  ~Person() {
    cout << "析构函数!" << endl;
  }
public:
  int age;
};
void test01() //测试默认的拷贝构造函数是值传递
{
  Person p1(18);
  //如果不写拷贝构造,编译器会自动添加拷贝构造,并且做浅拷贝操作
  Person p2(p1);  //假如没有写拷贝构造,就默认将P1的所有属性值都赋值给P2
  cout << "p2的年龄为: " << p2.age << endl;
}
void test02() //测试:如果用户提供有参构造,编译器不会提供默认构造,但是会提供拷贝构造
{
    //前提:我们已经写出了有参构造函数
  Person p1; //此时如果用户自己没有提供默认构造,会出错
  Person p2(10); //用户提供的有参
  Person p3(p2); //此时如果用户没有提供拷贝构造,编译器会提供
  
  //如果用户提供拷贝构造,编译器不会提供其他构造函数
  Person p4; //此时如果用户自己没有提供默认构造,会出错
  Person p5(10); //此时如果用户自己没有提供有参,会出错
  Person p6(p5); //用户自己提供拷贝构造
}
int main() {
  test01();
  system("pause");
  return 0;
}
🥕1.5 深拷贝与浅拷贝

深浅拷贝是面试经典问题,也是常见的一个坑

浅拷贝z:简单的赋值拷贝操作

深拷贝:在堆区重新申请空间,进行拷贝操作

示例:

class Person {
public:
  //无参(默认)构造函数
  Person() {
    cout << "无参构造函数!" << endl;
  }
  //有参构造函数
  Person(int age ,int height) {
    
    cout << "有参构造函数!" << endl;
    m_age = age;
    m_height = new int(height); //在堆区创建一个指针,并接收
    
  }
  //拷贝构造函数  
  Person(const Person& p) { //这是我们自己的提供的深拷贝构造函数
    cout << "拷贝构造函数!" << endl;
    //如果不利用深拷贝在堆区创建新内存,会导致浅拷贝带来的重复释放堆区问题
    m_age = p.m_age;
        
    m_height = new int(*p.m_height); //深拷贝:重新创建一片区域,赋值其指针指向区域的内容
        //编译器为我们提供的默认的拷贝构造函数是这样的:m_height = p.m_height
    
  }
  //析构函数
  ~Person() {
        //堆区的数据由程序员自己开辟,同时也有程序员自己释放,而析构函数就起到释放的作用
    cout << "析构函数!" << endl;
    if (m_height != NULL)
    {
      delete m_height; //释放堆区的数据
            m_height = NULL; //避免野指针
    }
  }
public:
  int m_age;
  int* m_height;
};
void test01()
{
  Person p1(18, 180);
  Person p2(p1);
    /*这是编译器自己提供的拷贝构造函数,默认是浅拷贝,会将P1的所有内容都复制一份,其中就包括m_height指针。此时,p1和p2的m_height都指向同一片区域。
    而p2会先运行析构函数,将其m_height所指向的区域释放,p1会后运行析构函数,也会尝试将m_height所指向的区域释放,而这篇区域已经很被释放过一次了,因此就出错,也就是堆区的内存的重复释放问题。
    这就是浅拷贝的问题,需要·使用深拷贝来解决,思路是将指针指向的区域的内容再重新赋值一份,这需要我们自己区实现拷贝构造函数
    */
  
    //*p1.m_height表示输出m_height指针所指向区域的内容
  cout << "p1的年龄: " << p1.m_age << " 身高: " << *p1.m_height << endl;
  cout << "p2的年龄: " << p2.m_age << " 身高: " << *p2.m_height << endl;
}
int main() {
  test01();
  system("pause");
  return 0;
}

总结:如果属性有在堆区开辟的,一定要自己提供拷贝构造函数(深拷贝),防止浅拷贝带来的问题

🥕1.6 初始化列表

作用:

C++提供了初始化列表语法,用来初始化属性

语法:构造函数():属性1(值1),属性2(值2)... {}

示例:

class Person {
public:
  传统方式初始化
  //Person(int a, int b, int c) {
  //  m_A = a;
  //  m_B = b;
  //  m_C = c;
  //}
  //初始化列表方式初始化
  Person(int a, int b, int c) :m_A(a), m_B(b), m_C(c) {}
  void PrintPerson() {
    cout << "mA:" << m_A << endl;
    cout << "mB:" << m_B << endl;
    cout << "mC:" << m_C << endl;
  }
private:
  int m_A;
  int m_B;
  int m_C;
};
int main() {
  Person p(1, 2, 3);
  p.PrintPerson();
  system("pause");
  return 0;
}
🥕1.7 对象作为类成员

C++类中的成员可以是另一个类的对象,我们称该成员为 对象成员

例如:

class A {}
class B
{
    A a;
}

B类中有对象A作为成员,A为对象成员

那么当创建B对象时,A与B的构造和析构的顺序是谁先谁后?

示例:

class Phone
{
public:
  Phone(string name)
  {
    m_PhoneName = name;
    cout << "Phone构造" << endl;
  }
  ~Phone()
  {
    cout << "Phone析构" << endl;
  }
  string m_PhoneName;
};
class Person
{
public:
  //初始化列表可以告诉编译器调用哪一个构造函数
  Person(string name, string pName) :m_Name(name), m_Phone(pName)
  {
    cout << "Person构造" << endl;
  }
  ~Person()
  {
    cout << "Person析构" << endl;
  }
  void playGame()
  {
    cout << m_Name << " 使用" << m_Phone.m_PhoneName << " 牌手机! " << endl;
  }
  string m_Name;
  Phone m_Phone;
};
void test01()
{
  //当类中成员是其他类对象时,我们称该成员为 对象成员
  //构造的顺序是 :先调用对象成员的构造,再调用本类构造
  //析构顺序与构造相反
  Person p("张三" , "苹果X");
  p.playGame();
}
int main() {
  test01();
  system("pause");
  return 0;
}
🥕1.8 静态成员

静态成员就是在成员变量和成员函数前加上关键字static,称为静态成员

静态成员分为:

  • 静态成员变量
  • 所有对象共享同一份数据
  • 在编译阶段分配内存
  • 类内声明,类外初始化
  • 静态成员函数
  • 所有对象共享同一个函数
  • 静态成员函数只能访问静态成员变量

**示例1 :**静态成员变量

class Person
{
  
public:
  static int m_A; //静态成员变量
  //静态成员变量特点:
  //1 在编译阶段分配内存
  //2 类内声明,类外初始化
  //3 所有对象共享同一份数据
private:
  static int m_B; //静态成员变量也是有访问权限的
};
int Person::m_A = 10;
int Person::m_B = 10;
void test01()
{
  //静态成员变量两种访问方式
  //1、通过对象
  Person p1;
  p1.m_A = 100;
  cout << "p1.m_A = " << p1.m_A << endl;
  Person p2;
  p2.m_A = 200;
  cout << "p1.m_A = " << p1.m_A << endl; //共享同一份数据
  cout << "p2.m_A = " << p2.m_A << endl;
  //2、通过类名
  cout << "m_A = " << Person::m_A << endl;
  //cout << "m_B = " << Person::m_B << endl; //私有权限访问不到
}
int main() {
  test01();
  system("pause");
  return 0;
}

**示例2:**静态成员函数

class Person
{
public:
  //静态成员函数特点:
  //1 程序共享一个函数
  //2 静态成员函数只能访问静态成员变量
  
  static void func()
  {
    cout << "func调用" << endl;
    m_A = 100;
    //m_B = 100; //错误,不可以访问非静态成员变量
  }
  static int m_A; //静态成员变量
  int m_B; // 
private:
  //静态成员函数也是有访问权限的
  static void func2()
  {
    cout << "func2调用" << endl;
  }
};
int Person::m_A = 10;
void test01()
{
  //静态成员变量两种访问方式
  //1、通过对象
  Person p1;
  p1.func();
  //2、通过类名
  Person::func();
  //Person::func2(); //私有权限访问不到
}
int main() {
  test01();
  system("pause");
  return 0;
}

🕮2 总结

在代码的舞台上,C++翩翩起舞。

纵观代码的山川大地,无边的可能在眼前延展, C++,是智慧的风,吹动着科技的帆船。

用韵律的二进制,谱写着自由的交响曲, C++,是数字艺术的荣光,闪烁在信息的星空。

愿C++永远如诗,激励创造者的灵感。

渴望挑战C++的学习路径和掌握进阶技术?不妨点击下方链接,一同探讨更多C++的奇迹吧。我们推出了引领趋势的💻C++专栏:《C++从基础到进阶》 ,旨在深度探索C++的实际应用和创新。🌐🔍

相关文章
|
5天前
|
存储 编译器 C语言
c++的学习之路:5、类和对象(1)
c++的学习之路:5、类和对象(1)
19 0
|
5天前
|
C++
c++的学习之路:7、类和对象(3)
c++的学习之路:7、类和对象(3)
19 0
|
4天前
|
设计模式 Java C++
【C++高阶(八)】单例模式&特殊类的设计
【C++高阶(八)】单例模式&特殊类的设计
|
4天前
|
编译器 C++
【C++基础(八)】类和对象(下)--初始化列表,友元,匿名对象
【C++基础(八)】类和对象(下)--初始化列表,友元,匿名对象
|
30天前
|
存储 C++ 容器
C++入门指南:string类文档详细解析(非常经典,建议收藏)
C++入门指南:string类文档详细解析(非常经典,建议收藏)
38 0
|
30天前
|
存储 编译器 C语言
C++入门: 类和对象笔记总结(上)
C++入门: 类和对象笔记总结(上)
34 0
|
8天前
|
存储 安全 C语言
【C++】string类
【C++】string类
|
存储 编译器 Linux
标准库中的string类(中)+仅仅反转字母+字符串中的第一个唯一字符+字符串相加——“C++”“Leetcode每日一题”
标准库中的string类(中)+仅仅反转字母+字符串中的第一个唯一字符+字符串相加——“C++”“Leetcode每日一题”
|
10天前
|
编译器 C++
标准库中的string类(上)——“C++”
标准库中的string类(上)——“C++”
|
10天前
|
编译器 C++
自从学了C++之后,小雅兰就有对象了!!!(类与对象)(中)——“C++”
自从学了C++之后,小雅兰就有对象了!!!(类与对象)(中)——“C++”