BAE系统的Broadsword Spine能将士兵衣服变为电源/数据中心

简介:

电子产品已在战场上发挥越来越重要的作用,在现代战争中,电池也和子弹一样成为军队供应链中最重要的一部分。普通士兵的行军背包平均重量约为41kg ,这无疑对他们来说是个不小的负担。近日英国BAE系统公司(BAE Systems)联手Intelligent Textiles Limited公司研发了一款纺织电子设备——Broadsword Spine,将其集成到士兵的衣服上后能充当无线的数据网络或电源。Broadsword Spine是一款集成到士兵背心、外套或皮带上的背带。该装置包括了一个电池组、一系列导电的纺织导管及输出功率为180w的八个USB接口。有了这款设备,士兵无需再携带笨重的电池组等。BAE表示,这款设备能够帮士兵减轻40%的重量。 Broadsword Spin还可通过汽车点烟器口进行充电,具有耐用、防水、防火、防潮及耐冲击等特点。

Broadsword Spin通过了英国国防部的通用战士架构标准(Generic Soldier Architecture Standard)。研发人员希望这款设备能被用于消防和救援等领域。

BAE系统的国防信息技术总监Paul Burke表示, 轻量级、无电缆的Broadsword Spin将替代现有的系统。这是我们与ITL合作开发的第一款产品,使用了革命性的电子纺织材料。 





====================================分割线================================


本文转自d1net(转载)

目录
相关文章
|
2月前
|
运维 监控 中间件
数据中心运维监控系统产品价值与优势
华汇数据运维监控系统面向IT基础架构及IT支撑平台的监控和运维管理,包含监测、分析、展现和告警。监控范围涵盖了网络设备、主机系统、数据库、中间件和应用软件等。
85 4
|
8月前
|
机器学习/深度学习 存储 运维
利用机器学习优化数据中心冷却系统
【5月更文挑战第20天】 在数据中心运营成本中,冷却系统占据了一大块。随着能源价格的上涨和环境保护意识的增强,如何降低数据中心的能耗成为行业关注的重点。本文通过引入机器学习技术来优化数据中心冷却系统,旨在减少不必要的能源消耗,同时保持适宜的操作温度。通过收集历史温度数据、服务器负载信息以及外部气象条件,构建了一个预测模型,该模型能够实时调整冷却策略,实现动态节能。实验结果表明,与传统冷却系统相比,应用机器学习优化后的系统在不影响性能的前提下,能够节约高达20%的能源消耗。
|
8月前
|
机器学习/深度学习 存储 传感器
利用机器学习优化数据中心冷却系统
【5月更文挑战第30天】 在数据中心的运行中,冷却系统的能效对整体运营成本有着显著的影响。随着人工智能技术的进步,特别是机器学习(ML)的发展,出现了新的机会来优化数据中心的能源使用效率。本文将探讨如何通过机器学习模型预测数据中心的热负荷,并据此动态调整冷却策略,以实现能耗最小化。我们将介绍所采用的数据集、预处理方法、模型选择、训练过程以及最终实施的策略。结果表明,基于机器学习的预测系统能够有效降低数据中心的能源消耗,并为可持续运营提供支持。
|
8月前
|
机器学习/深度学习 监控 算法
利用机器学习优化数据中心冷却系统
【5月更文挑战第30天】在数据中心的运营成本中,冷却系统占据了相当一部分。为了提高能效和降低成本,本文提出了一种基于机器学习的方法来优化数据中心的冷却系统。通过对大量历史数据的分析和挖掘,我们设计了一个预测模型,用于实时监控和调整数据中心的温度。实验结果表明,该方法可以有效降低能耗,提高数据中心的运行效率。
|
8月前
|
机器学习/深度学习 数据采集 存储
提升数据中心能效:采用机器学习优化冷却系统
【5月更文挑战第28天】在数据中心的运营成本中,冷却系统的能源消耗占据了显著比例。随着能源价格的不断上涨和可持续发展的需求日益增长,如何降低这一开支成为业界关注的焦点。本文将探讨利用机器学习技术对数据中心冷却系统进行优化的方法。通过分析历史数据和实时监控,机器学习模型能够预测冷却需求并动态调整系统设置,以实现最佳的能效比。这种方法不仅能减少能源消耗,还能提高系统的可靠性和稳定性。
|
8月前
|
机器学习/深度学习 传感器 监控
利用机器学习优化数据中心冷却系统
【5月更文挑战第27天】 随着数据中心能耗的不断攀升,尤其是冷却系统的能源消耗占据了相当一部分比例,如何通过智能化手段提高冷却效率成为行业关注焦点。本文提出了一种基于机器学习技术的数据中心冷却系统优化方案,通过实时监控和数据分析,动态调整冷却策略,以达到节能减排的目的。实验结果表明,该方案能有效降低数据中心的PUE值(功率使用效能比),为绿色计算提供可行的技术路径。
|
8月前
|
机器学习/深度学习 存储 监控
利用机器学习优化数据中心冷却系统
【4月更文挑战第28天】 在数据中心的运营成本中,冷却系统的耗电占据了显著比例。随着能源价格的上涨以及环境可持续性的重视,寻求高效的冷却策略变得尤为重要。本文将探讨如何应用机器学习算法来优化数据中心的冷却系统性能。通过分析历史温度数据、服务器负载和外部环境因素,机器学习模型能够预测数据中心内的热分布,并实时调整冷却设备的工作状态,以达到节能的目的。我们的研究显示,采用这种智能调节方法可以显著降低能耗,同时保持或甚至提升冷却效果。
92 1
|
8月前
|
机器学习/深度学习 算法 数据中心
利用机器学习优化数据中心冷却系统
【5月更文挑战第29天】 在数据中心的运营成本中,冷却系统占据了显著的比重。随着能源价格的不断攀升以及可持续发展的需求日益增加,开发高效、节能的冷却技术变得至关重要。本文将探讨如何应用机器学习算法来优化数据中心的冷却系统性能。通过对历史温度和负载数据的分析,我们训练了一个预测模型来动态调整冷却需求,实现按需冷却。结果显示,使用机器学习方法可以有效减少能耗,同时保持适宜的操作环境。
|
8月前
|
机器学习/深度学习 敏捷开发 测试技术
深入理解自动化测试:框架选择与实践挑战利用机器学习技术优化数据中心冷却系统
【5月更文挑战第27天】 在现代软件开发周期中,自动化测试已成为确保产品质量和加快市场投放的关键步骤。本文深入探讨了自动化测试的框架选择问题,并剖析了实施过程中面临的挑战及其解决方案。通过比较不同测试框架的特点,我们旨在为读者提供一套明确的指导原则,帮助他们根据项目需求做出恰当的技术决策。同时,文中还分享了实际案例和最佳实践,以期帮助开发团队克服实施自动化测试时可能遇到的障碍。