【求助】使用免费GPU计算实例尝试模型库中的大模型,报错:无法利用GPU,找不到模型文件

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 开启了免费GPU计算实例,但是报错。

开启了如下GPU的实例:
image.png

运行如下代码:

from modelscope import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(0)

path = 'OpenBMB/MiniCPM-2B-dpo-bf16'
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)

responds, history = model.chat(tokenizer, "山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?", temperature=0.8, top_p=0.8)
print(responds)

得到如下执行日志:

2024-02-22 20:25:41,904 - modelscope - INFO - PyTorch version 2.1.2+cu121 Found.
2024-02-22 20:25:41,907 - modelscope - INFO - TensorFlow version 2.14.0 Found.
2024-02-22 20:25:41,909 - modelscope - INFO - Loading ast index from /mnt/workspace/.cache/modelscope/ast_indexer
2024-02-22 20:25:41,909 - modelscope - INFO - No valid ast index found from /mnt/workspace/.cache/modelscope/ast_indexer, generating ast index from prebuilt!
2024-02-22 20:25:41,967 - modelscope - INFO - Loading done! Current index file version is 1.12.0, with md5 509123dba36c5e70a95f6780df348471 and a total number of 964 components indexed
/opt/conda/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
2024-02-22 20:25:43.223187: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-02-22 20:25:43.225595: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-02-22 20:25:43.263147: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-02-22 20:25:43.263200: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-02-22 20:25:43.263228: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-02-22 20:25:43.271228: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2024-02-22 20:25:43.271779: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-22 20:25:44.177266: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
Downloading: 100%|██████████| 0.99k/0.99k [00:00<00:00, 4.45MB/s]
Downloading: 100%|██████████| 9.54k/9.54k [00:00<00:00, 31.0MB/s]
Downloading: 100%|██████████| 113/113 [00:00<00:00, 1.00MB/s]
Downloading: 100%|██████████| 66.3k/66.3k [00:00<00:00, 8.84MB/s]
Downloading: 100%|██████████| 11.3k/11.3k [00:00<00:00, 36.5MB/s]
Downloading: 100%|██████████| 414/414 [00:00<00:00, 3.11MB/s]
Downloading: 100%|██████████| 5.92M/5.92M [00:00<00:00, 39.3MB/s]
Downloading: 100%|██████████| 1.90M/1.90M [00:00<00:00, 128MB/s]
Downloading: 100%|██████████| 1.11k/1.11k [00:00<00:00, 6.25MB/s]
2024-02-22 20:25:49,918 - modelscope - WARNING - Download interval is too small, use local cache
OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /mnt/workspace/.cache/modelscope/OpenBMB/MiniCPM-2B-dpo-bf16.

其中有两个错误:

  • 2024-02-22 20:25:43.271228: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
  • OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory /mnt/workspace/.cache/modelscope/OpenBMB/MiniCPM-2B-dpo-bf16.
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
|
1月前
|
并行计算 Linux PyTorch
在云上部署ChatGLM2-6B大模型(GPU版)
本教程指导您在配置了Alibaba Cloud Linux 3的GPU云服务器上,安装大模型运行环境(如Anaconda、Pytorch等),并部署大语言模型,最后通过Streamlit运行大模型对话网页Demo。教程包括创建资源、登录ECS实例、安装及校验CUDA、NVIDIA驱动和cuDNN等步骤。
|
2月前
|
机器学习/深度学习 并行计算 算法
GPU加速与代码性能优化:挖掘计算潜力的深度探索
【10月更文挑战第20天】GPU加速与代码性能优化:挖掘计算潜力的深度探索
|
2月前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
103 6
|
5月前
|
监控 Serverless 异构计算
函数计算操作报错合集之GPU服务请求返回了404错误是什么原因
在使用函数计算服务(如阿里云函数计算)时,用户可能会遇到多种错误场景。以下是一些常见的操作报错及其可能的原因和解决方法,包括但不限于:1. 函数部署失败、2. 函数执行超时、3. 资源不足错误、4. 权限与访问错误、5. 依赖问题、6. 网络配置错误、7. 触发器配置错误、8. 日志与监控问题。
|
6月前
|
机器学习/深度学习 并行计算 算法框架/工具
为什么深度学习模型在GPU上运行更快?
为什么深度学习模型在GPU上运行更快?
84 2
|
5月前
|
并行计算 API 数据处理
GPU(图形处理单元)因其强大的并行计算能力而备受关注。与传统的CPU相比,GPU在处理大规模数据密集型任务时具有显著的优势。
GPU(图形处理单元)因其强大的并行计算能力而备受关注。与传统的CPU相比,GPU在处理大规模数据密集型任务时具有显著的优势。
|
6月前
|
缓存 Serverless API
函数计算产品使用问题之GPU实例留运行但未进行 GPU 计算,是否还会计费
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
1月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
6天前
|
人工智能 JSON Linux
利用阿里云GPU加速服务器实现pdf转换为markdown格式
随着AI模型的发展,GPU需求日益增长,尤其是个人学习和研究。直接购置硬件成本高且更新快,建议选择阿里云等提供的GPU加速型服务器。
利用阿里云GPU加速服务器实现pdf转换为markdown格式

热门文章

最新文章