Python爬虫之关系型数据库存储#5

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: python MySQL 增删改查操作【2月更文挑战第17天】


关系型数据库是基于关系模型的数据库,而关系模型是通过二维表来保存的,所以它的存储方式就是行列组成的表,每一列是一个字段,每一行是一条记录。表可以看作某个实体的集合,而实体之间存在联系,这就需要表与表之间的关联关系来体现,如主键外键的关联关系。多个表组成一个数据库,也就是关系型数据库。

关系型数据库有多种,如 SQLite、MySQL、Oracle、SQL Server、DB2 等。


MySQL 的存储

本节中,我们主要介绍 Python 3 下 MySQL 的存储。

在 Python 2 中,连接 MySQL 的库大多是使用 MySQLdb,但是此库的官方并不支持 Python 3,所以这里推荐使用的库是 PyMySQL。

本节中,我们就来讲解使用 PyMySQL 操作 MySQL 数据库的方法。

1. 准备工作

在开始之前,请确保已经安装好了 MySQL 数据库并保证它能正常运行,而且需要安装好 Py MySQL 库。如果没有安装,可以参考第 1 章。

2. 连接数据库

这里,首先尝试连接一下数据库。假设当前的 MySQL 运行在本地,用户名为 root,密码为 123456,运行端口为 3306。这里利用 PyMySQL 先连接 MySQL,然后创建一个新的数据库,名字叫作 spiders,代码如下:

import pymysql  


db = pymysql.connect(host='localhost',user='root', password='123456', port=3306)  

cursor = db.cursor()  

cursor.execute('SELECT VERSION()')  

data = cursor.fetchone()  

print('Database version:', data)  

cursor.execute("CREATE DATABASE spiders DEFAULT CHARACTER SET utf8")  

db.close()

运行结果如下:

Database version: ('5.6.22',)

这里通过 PyMySQL 的 connect 方法声明一个 MySQL 连接对象 db,此时需要传入 MySQL 运行的 host(即 IP)。由于 MySQL 在本地运行,所以传入的是 localhost。如果 MySQL 在远程运行,则传入其公网 IP 地址。后续的参数 user 即用户名,password 即密码,port 即端口(默认为 3306)。

连接成功后,需要再调用 cursor 方法获得 MySQL 的操作游标,利用游标来执行 SQL 语句。这里我们执行了两句 SQL,直接用 execute 方法执行即可。第一句 SQL 用于获得 MySQL 的当前版本,然后调用 fetchone 方法获得第一条数据,也就得到了版本号。第二句 SQL 执行创建数据库的操作,数据库名叫作 spiders,默认编码为 UTF-8。由于该语句不是查询语句,所以直接执行后就成功创建了数据库 spiders。接着,再利用这个数据库进行后续的操作。

3. 创建表

一般来说,创建数据库的操作只需要执行一次就好了。当然,我们也可以手动创建数据库。以后,我们的操作都在 spiders 数据库上执行。

创建数据库后,在连接时需要额外指定一个参数 db。

接下来,新创建一个数据表 students,此时执行创建表的 SQL 语句即可。这里指定 3 个字段,结构如表 5-1 所示。

表 5-1 数据表 students

字 段 名 含  义 类  型
id 学号 varchar
name 姓名 varchar
age 年龄 int

创建该表的示例代码如下:

import pymysql


db = pymysql.connect(host='localhost', user='root', password='123456', port=3306, db='spiders')

cursor = db.cursor()

sql = 'CREATE TABLE IF NOT EXISTS students (id VARCHAR(255) NOT NULL, name VARCHAR(255) NOT NULL, age INT NOT NULL, PRIMARY KEY (id))'

cursor.execute(sql)

db.close()

运行之后,我们便创建了一个名为 students 的数据表。

当然,为了演示,这里只指定了最简单的几个字段。实际上,在爬虫过程中,我们会根据爬取结果设计特定的字段。

4. 插入数据

下一步就是向数据库中插入数据了。例如,这里爬取了一个学生信息,学号为 20120001,名字为 Bob,年龄为 20,那么如何将该条数据插入数据库呢?示例代码如下:

import pymysql


id = '20120001'

user = 'Bob'

age = 20


db = pymysql.connect(host='localhost', user='root', password='123456', port=3306, db='spiders')

cursor = db.cursor()

sql = 'INSERT INTO students(id, name, age) values(% s, % s, % s)'

try:

   cursor.execute(sql, (id, user, age))

   db.commit()

except:

   db.rollback()

db.close()

这里首先构造了一个 SQL 语句,其 Value 值没有用字符串拼接的方式来构造,如:

sql = 'INSERT INTO students(id, name, age) values(' + id + ', ' + name + ', ' + age + ')'

这样的写法烦琐而且不直观,所以我们选择直接用格式化符 % s 来实现。有几个 Value 写几个 % s,我们只需要在 execute 方法的第一个参数传入该 SQL 语句,Value 值用统一的元组传过来就好了。这样的写法既可以避免字符串拼接的麻烦,又可以避免引号冲突的问题。

之后值得注意的是,需要执行 db 对象的 commit 方法才可实现数据插入,这个方法才是真正将语句提交到数据库执行的方法。对于数据插入、更新、删除操作,都需要调用该方法才能生效。

接下来,我们加了一层异常处理。如果执行失败,则调用 rollback 执行数据回滚,相当于什么都没有发生过。

这里涉及事务的问题。事务机制可以确保数据的一致性,也就是这件事要么发生了,要么没有发生。比如插入一条数据,不会存在插入一半的情况,要么全部插入,要么都不插入,这就是事务的原子性。另外,事务还有 3 个属性 —— 一致性、隔离性和持久性。这 4 个属性通常称为 ACID 特性,具体如表所示。

事务的 4 个属性

属  性 解  释
原子性(atomicity) 事务是一个不可分割的工作单位,事务中包括的诸操作要么都做,要么都不做
一致性(consistency) 事务必须使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性是密切相关的
隔离性(isolation) 一个事务的执行不能被其他事务干扰,即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰
持久性(durability) 持续性也称永久性(permanence),指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响

插入、更新和删除操作都是对数据库进行更改的操作,而更改操作都必须为一个事务,所以这些操作的标准写法就是:

try:

   cursor.execute(sql)

   db.commit()

except:

   db.rollback()

这样便可以保证数据的一致性。这里的 commit 和 rollback 方法就为事务的实现提供了支持。

上面数据插入的操作是通过构造 SQL 语句实现的,但是很明显,这有一个极其不方便的地方,比如突然增加了性别字段 gender,此时 SQL 语句就需要改成:

INSERT INTO students(id, name, age, gender) values(% s, % s, % s, % s)

相应的元组参数则需要改成:

(id, name, age, gender)

这显然不是我们想要的。在很多情况下,我们要达到的效果是插入方法无需改动,做成一个通用方法,只需要传入一个动态变化的字典就好了。比如,构造这样一个字典:

{

   'id': '20120001',

   'name': 'Bob',

   'age': 20

}

然后 SQL 语句会根据字典动态构造,元组也动态构造,这样才能实现通用的插入方法。所以,这里我们需要改写一下插入方法:

data = {

   'id': '20120001',

   'name': 'Bob',

   'age': 20

}

table = 'students'

keys = ', '.join(data.keys())

values = ', '.join(['% s'] * len(data))

sql = 'INSERT INTO {table}({keys}) VALUES ({values})'.format(table=table, keys=keys, values=values)

try:

  if cursor.execute(sql, tuple(data.values())):

      print('Successful')

      db.commit()

except:

   print('Failed')

   db.rollback()

db.close()

这里我们传入的数据是字典,并将其定义为 data 变量。表名也定义成变量 table。接下来,就需要构造一个动态的 SQL 语句了。

首先,需要构造插入的字段 id、name 和 age。这里只需要将 data 的键名拿过来,然后用逗号分隔即可。所以 ', '.join(data.keys()) 的结果就是 id, name, age,然后需要构造多个 % s 当作占位符,有几个字段构造几个即可。比如,这里有三个字段,就需要构造 % s, % s, % s。这里首先定义了长度为 1 的数组 ['% s'],然后用乘法将其扩充为 ['% s', '% s', '% s'],再调用 join 方法,最终变成 % s, % s, % s。最后,我们再利用字符串的 format 方法将表名、字段名和占位符构造出来。最终的 SQL 语句就被动态构造成了:

INSERT INTO students(id, name, age) VALUES (% s, % s, % s)

最后,为 execute 方法的第一个参数传入 sql 变量,第二个参数传入 data 的键值构造的元组,就可以成功插入数据了。

如此以来,我们便实现了传入一个字典来插入数据的方法,不需要再去修改 SQL 语句和插入操作了。

5. 更新数据

数据更新操作实际上也是执行 SQL 语句,最简单的方式就是构造一个 SQL 语句,然后执行:

sql = 'UPDATE students SET age = % s WHERE name = % s'

try:

  cursor.execute(sql, (25, 'Bob'))

  db.commit()

except:

  db.rollback()

db.close()

这里同样用占位符的方式构造 SQL,然后执行 execute 方法,传入元组形式的参数,同样执行 commit 方法执行操作。如果要做简单的数据更新的话,完全可以使用此方法。

但是在实际的数据抓取过程中,大部分情况下需要插入数据,但是我们关心的是会不会出现重复数据,如果出现了,我们希望更新数据而不是重复保存一次。另外,就像前面所说的动态构造 SQL 的问题,所以这里可以再实现一种去重的方法,如果数据存在,则更新数据;如果数据不存在,则插入数据。另外,这种做法支持灵活的字典传值。示例如下:

data = {

   'id': '20120001',

   'name': 'Bob',

   'age': 21

}


table = 'students'

keys = ', '.join(data.keys())

values = ', '.join(['% s'] * len(data))


sql = 'INSERT INTO {table}({keys}) VALUES ({values}) ON DUPLICATE KEY UPDATE'.format(table=table, keys=keys, values=values)

update = ','.join(["{key} = % s".format(key=key) for key in data])

sql += update

try:

   if cursor.execute(sql, tuple(data.values())*2):

       print('Successful')

       db.commit()

except:

   print('Failed')

   db.rollback()

db.close()

这里构造的 SQL 语句其实是插入语句,但是我们在后面加了 ON DUPLICATE KEY UPDATE。这行代码的意思是如果主键已经存在,就执行更新操作。比如,我们传入的数据 id 仍然为 20120001,但是年龄有所变化,由 20 变成了 21,此时这条数据不会被插入,而是直接更新 id 为 20120001 的数据。完整的 SQL 构造出来是这样的:

INSERT INTO students(id, name, age) VALUES (% s, % s, % s) ON DUPLICATE KEY UPDATE id = % s, name = % s, age = % s

这里就变成了 6 个 % s。所以在后面的 execute 方法的第二个参数元组就需要乘以 2 变成原来的 2 倍。

如此一来,我们就可以实现主键不存在便插入数据,存在则更新数据的功能了。

6. 删除数据

删除操作相对简单,直接使用 DELETE 语句即可,只是需要指定要删除的目标表名和删除条件,而且仍然需要使用 db 的 commit 方法才能生效。示例如下:

table = 'students'

condition = 'age > 20'


sql = 'DELETE FROM  {table} WHERE {condition}'.format(table=table, condition=condition)

try:

   cursor.execute(sql)

   db.commit()

except:

   db.rollback()


db.close()

因为删除条件有多种多样,运算符有大于、小于、等于、LIKE 等,条件连接符有 AND、OR 等,所以不再继续构造复杂的判断条件。这里直接将条件当作字符串来传递,以实现删除操作。

7. 查询数据

说完插入、修改和删除等操作,还剩下非常重要的一个操作,那就是查询。查询会用到 SELECT 语句,示例如下:

sql = 'SELECT * FROM students WHERE age >= 20'


try:

   cursor.execute(sql)

   print('Count:', cursor.rowcount)

   one = cursor.fetchone()

   print('One:', one)

   results = cursor.fetchall()

   print('Results:', results)

   print('Results Type:', type(results))

   for row in results:

       print(row)

except:

   print('Error')

运行结果如下:

Count: 4

One: ('20120001', 'Bob', 25)

Results: (('20120011', 'Mary', 21), ('20120012', 'Mike', 20), ('20120013', 'James', 22))

Results Type:

('20120011', 'Mary', 21)

('20120012', 'Mike', 20)

('20120013', 'James', 22)

这里我们构造了一条 SQL 语句,将年龄 20 岁及以上的学生查询出来,然后将其传给 execute 方法。注意,这里不再需要 db 的 commit 方法。接着,调用 cursor 的 rowcount 属性获取查询结果的条数,当前示例中是 4 条。

然后我们调用了 fetchone 方法,这个方法可以获取结果的第一条数据,返回结果是元组形式,元组的元素顺序跟字段一一对应,即第一个元素就是第一个字段 id,第二个元素就是第二个字段 name,以此类推。随后,我们又调用了 fetchall 方法,它可以得到结果的所有数据。然后将其结果和类型打印出来,它是二重元组,每个元素都是一条记录,我们将其遍历输出出来。

但是这里需要注意一个问题,这里显示的是 3 条数据而不是 4 条,fetchall 方法不是获取所有数据吗?这是因为它的内部实现有一个偏移指针用来指向查询结果,最开始偏移指针指向第一条数据,取一次之后,指针偏移到下一条数据,这样再取的话,就会取到下一条数据了。我们最初调用了一次 fetchone 方法,这样结果的偏移指针就指向下一条数据,fetchall 方法返回的是偏移指针指向的数据一直到结束的所有数据,所以该方法获取的结果就只剩 3 个了。

此外,我们还可以用 while 循环加 fetchone 方法来获取所有数据,而不是用 fetchall 全部一起获取出来。fetchall 会将结果以元组形式全部返回,如果数据量很大,那么占用的开销会非常高。因此,推荐使用如下方法来逐条取数据:

sql = 'SELECT * FROM students WHERE age >= 20'

try:

   cursor.execute(sql)

   print('Count:', cursor.rowcount)

   row = cursor.fetchone()

   while row:

       print('Row:', row)

       row = cursor.fetchone()

except:

   print('Error')

这样每循环一次,指针就会偏移一条数据,随用随取,简单高效。

本节中,我们介绍了如何使用 PyMySQL 操作 MySQL 数据库以及一些 SQL 语句的构造方法,后面会在实战案例中应用这些操作来存储数据。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
2天前
|
缓存 NoSQL 关系型数据库
在Python Web开发过程中:数据库与缓存,MySQL和NoSQL数据库的主要差异是什么?
MySQL与NoSQL的主要区别在于数据结构、查询语言和可扩展性。MySQL是关系型数据库,依赖预定义的数据表结构,使用SQL进行复杂查询,适合垂直扩展。而NoSQL提供灵活的存储方式(如JSON、哈希表),无统一查询语言,支持横向扩展,适用于处理大规模、非结构化数据和高并发场景。选择哪种取决于应用需求、数据模型及扩展策略。
10 0
|
3天前
|
SQL 关系型数据库 MySQL
第十三章 Python数据库编程
第十三章 Python数据库编程
|
3天前
|
存储 网络协议 关系型数据库
Python从入门到精通:2.3.2数据库操作与网络编程——学习socket编程,实现简单的TCP/UDP通信
Python从入门到精通:2.3.2数据库操作与网络编程——学习socket编程,实现简单的TCP/UDP通信
|
5天前
|
数据采集 存储 JSON
Python爬虫面试:requests、BeautifulSoup与Scrapy详解
【4月更文挑战第19天】本文聚焦于Python爬虫面试中的核心库——requests、BeautifulSoup和Scrapy。讲解了它们的常见问题、易错点及应对策略。对于requests,强调了异常处理、代理设置和请求重试;BeautifulSoup部分提到选择器使用、动态内容处理和解析效率优化;而Scrapy则关注项目架构、数据存储和分布式爬虫。通过实例代码,帮助读者深化理解并提升面试表现。
13 0
|
8天前
|
NoSQL MongoDB Redis
Python与NoSQL数据库(MongoDB、Redis等)面试问答
【4月更文挑战第16天】本文探讨了Python与NoSQL数据库(如MongoDB、Redis)在面试中的常见问题,包括连接与操作数据库、错误处理、高级特性和缓存策略。重点介绍了使用`pymongo`和`redis`库进行CRUD操作、异常捕获以及数据一致性管理。通过理解这些问题、易错点及避免策略,并结合代码示例,开发者能在面试中展现其技术实力和实践经验。
130 8
Python与NoSQL数据库(MongoDB、Redis等)面试问答
|
8天前
|
SQL 关系型数据库 MySQL
Python与MySQL数据库交互:面试实战
【4月更文挑战第16天】本文介绍了Python与MySQL交互的面试重点,包括使用`mysql-connector-python`或`pymysql`连接数据库、执行SQL查询、异常处理、防止SQL注入、事务管理和ORM框架。易错点包括忘记关闭连接、忽视异常处理、硬编码SQL、忽略事务及过度依赖低效查询。通过理解这些问题和提供策略,可提升面试表现。
29 6
|
8天前
|
数据采集 JavaScript 前端开发
使用Python打造爬虫程序之破茧而出:Python爬虫遭遇反爬虫机制及应对策略
【4月更文挑战第19天】本文探讨了Python爬虫应对反爬虫机制的策略。常见的反爬虫机制包括User-Agent检测、IP限制、动态加载内容、验证码验证和Cookie跟踪。应对策略包括设置合理User-Agent、使用代理IP、处理动态加载内容、验证码识别及维护Cookie。此外,还提到高级策略如降低请求频率、模拟人类行为、分布式爬虫和学习网站规则。开发者需不断学习新策略,同时遵守规则和法律法规,确保爬虫的稳定性和合法性。
|
9天前
|
存储 关系型数据库 MySQL
Python搭建代理IP池实现存储IP的方法
Python搭建代理IP池实现存储IP的方法
|
9天前
|
存储 关系型数据库 MySQL
如何处理爬取到的数据,例如存储到数据库或文件中?
处理爬取的数据,可存储为txt、csv(适合表格数据)或json(适合结构化数据)文件。若需存储大量数据并执行复杂查询,可选择关系型(如MySQL)或非关系型(如MongoDB)数据库。以MySQL为例,需安装数据库和Python的pymysql库,创建数据库和表,然后编写Python代码进行数据操作。选择存储方式应考虑数据类型、数量及后续处理需求。
18 1
|
15天前
|
数据采集 存储 API
网络爬虫与数据采集:使用Python自动化获取网页数据
【4月更文挑战第12天】本文介绍了Python网络爬虫的基础知识,包括网络爬虫概念(请求网页、解析、存储数据和处理异常)和Python常用的爬虫库requests(发送HTTP请求)与BeautifulSoup(解析HTML)。通过基本流程示例展示了如何导入库、发送请求、解析网页、提取数据、存储数据及处理异常。还提到了Python爬虫的实际应用,如获取新闻数据和商品信息。