【MATLAB】EEMD_ MFE_SVM_LSTM 神经网络时序预测算法

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【MATLAB】EEMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

EEMD_MFE_SVM_LSTM神经网络时序预测算法是一种结合了多种技术的复杂预测方法,旨在提高时序预测的准确性和稳定性。以下是对该算法的详细介绍:

  1. EEMD(扩展经验模态分解):EEMD是EMD(经验模态分解)的一种改进方法。通过在原始信号中加入随机噪声,EEMD能够使信号在各个尺度上都得到更充分的分解,从而提高了IMF(固有模式函数)的完整性和准确性。使用EEMD,原始时间序列可以被分解为多个IMF和一个残差序列。这些IMF和残差序列代表了原始信号在不同频率和时间尺度上的变化。
  2. MFE(多尺度特征提取):在EEMD分解之后,通过MFE可以从每个IMF中提取出多尺度的特征。这些特征可能包括信号的统计特性、频域特性、时域特性等。多尺度特征的提取有助于更全面地描述原始信号的特性,并为后续的预测模型提供更丰富的信息。
  3. SVM(支持向量机):SVM是一种监督学习模型,通常用于分类和回归分析。在时序预测中,SVM可以利用历史数据和提取的多尺度特征学习到一个模型。这个模型可以捕捉信号中的非线性关系,并用于预测未来的数据点。SVM的优势在于其对于高维数据的处理能力,以及对于非线性关系的良好捕捉能力。
  4. LSTM(长短期记忆神经网络):LSTM是一种特殊的循环神经网络(RNN),特别适用于处理长时间序列相关的问题。LSTM的内部结构包括遗忘门、输入门、输出门和存储单元,这些门控单元使得LSTM能够学习到时间序列中的长期依赖关系。在EEMD_MFE_SVM_LSTM算法中,LSTM可以用于进一步优化SVM的预测结果。通过将每个IMF作为LSTM的输入,并利用LSTM模型对每个IMF进行预测,可以得到更精确的预测结果。

综上所述,EEMD_MFE_SVM_LSTM神经网络时序预测算法通过结合EEMD、MFE、SVM和LSTM等多种技术的优势,旨在提高时序预测的准确性和稳定性。首先,EEMD用于将原始时间序列分解为多个IMF和一个残差序列;然后,通过MFE从每个IMF中提取多尺度的特征;接着,利用SVM学习这些特征并得到一个初步的预测模型;最后,通过LSTM进一步优化这个预测模型,得到最终的预测结果。这种组合方法能够充分利用各种技术的优点,提高时序预测的准确性和稳定性。在实际应用中,EEMD_MFE_SVM_LSTM算法可以应用于各种领域,如金融市场预测、气象预报、能源消耗预测等。

2 出图效果

附出图效果如下:

3 代码获取

【MATLAB】EEMD_ MFE_SVM_LSTM 神经网络时序预测算法

https://mbd.pub/o/bread/ZZqXl55v

MATLAB 228 种科研算法及 23 期科研绘图合集(2024 年 2 月 21 号更新版)

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7



目录
相关文章
|
17天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
2天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
3天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
18 3
|
14天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
20天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
下一篇
无影云桌面