上进计划 | Python爬虫经典实战项目——电商数据爬取!

简介: 在如今这个网购风云从不间歇的时代,购物狂欢持续不断,一年一度的“6.18年中大促”、“11.11购物节”等等成为了网购电商平台的盛宴。在买买买的同时,“如何省钱?”成为了大家最关心的问题。比价、返利、优惠券都是消费者在网购时的刚需,但在这些“优惠”背后已产生灰色地带。

电商数据采集之电商数据爬虫——电商数据采集API接口

电商数据爬虫背景

在如今这个网购风云从不间歇的时代,购物狂欢持续不断,一年一度的“6.18年中大促”、“11.11购物节”等等成为了网购电商平台的盛宴。在买买买的同时,“如何省钱?”成为了大家最关心的问题。

比价、返利、优惠券都是消费者在网购时的刚需,但在这些“优惠”背后已产生灰色地带。

图片图片

网络爬虫由于成本和门槛较低,成为常用的数据获取技术手段,在遵循网络法律规定的前提之下,进行电商网站数据源爬取来进行商业分析。那么本期《上进计划》给大家带来的项目就是通过爬虫技术,让大家掌握常用的数据采集方式。

图片

爬虫概述

Python爬虫是用Python编程语言实现的网络爬虫,主要用于网络数据的抓取和处理。相比于其他语言,Python是一门非常适合开发网络爬虫的编程语言,大量内置包,可以轻松实现网络爬虫功能。Python爬虫可以做的事情很多,如搜索引擎、采集数据、广告过滤等,Python爬虫还可以用于数据分析,在数据的抓取方面作用巨大!

图片图片

Python爬虫架构组成

1.URL管理器:管理待爬取的url集合和已爬取的url集合,传送待爬取的url给网页下载器;
2.网页下载器:爬取url对应的网页,存储成字符串,传送给网页解析器;
3.网页解析器:解析出有价值的数据,存储下来,同时补充url到URL管理器。

Python爬虫工作原理

Python爬虫通过URL管理器,判断是否有待爬URL,如果有待爬URL,通过调度器进行传递给下载器,下载URL内容,并通过调度器传送给解析器,解析URL内容,并将价值数据和新URL列表通过调度器传递给应用程序,并输出价值信息的过程。

Python之所以强大,一个重要的原因就是,拿来即用的代码库丰富!Python内置的urllib模块,用于访问网络资源。但是,它用起来比较麻烦,也缺少很多实用的高级功能,更好的方案是使用Requests,我们今天的主角就是Requests。

关于Requests

Requests 自我定义为 HTTP for Humans:让 HTTP 服务人类,或者说最人性化的 HTTP。言外之意,之前的那些 HTTP 库太过繁琐,都不是给人用的。(urllib 表示:怪我咯!)

尽管听上去有些自大,但实际上它的的确确配得上这个评价,用过的都说好。这真的是一个非常值得使用的库,开发效率确实有很大的提升。

Requests提供了官方中文文档,其中包括了很清晰的“快速上手”和详尽的高级用法和接口指南。以至于我觉得再把文档里面内容搬运过来都是一种浪费。对于 Requests,要做的仅仅是两件事:

Ø 告诉你有这样一个工具,用来开发爬虫很轻松

Ø 告诉你它的官方文档很好,你去读就可以了

Requests的使用

1、pip安装Requests

pip install requests

2、示例:一行代码使用Requests

导入 Requests 模块

import requests

然后,尝试获取某个网页。本例子中,我们来获取Github 的公共时间线

r = requests.get('https://api.github.com/events')

3、Requests常用调用(get、post)

GET 变量接受所有以 get 方式发送的请求,及浏览器地址栏中的 ?之后的内容。

POST 变量接受所有以 post 方式发送的请求,例如,一个 form 以 method=post 提交

REQUEST 支持两种方式发送过来的请求,即 post 和 get 它都可以接受, 显示不显示要看传递方法,get 会显示在 url 中(有字符数限制),post 不会在 url 中显示,可以传递任意多的数据(只要服务器支持)。

4、Requests返回参数

r.status_code HTTP请求的返回状态,200表示连接成功,404表示失败

r.text HTTP响应内容的字符串形式,即url对应的页面内容

r.encoding 从HTTP header中猜测的响应内容编码方式

r.apparent_encoding 从内容中分析出的响应内容编码方式(备选编码方式)

r.content HTTP响应内容的二进制形式

关于Requests作者的冷知识

Requests的作者叫肯尼斯·赖茨(Kenneth Reitz),现就职于知名云服务提供商 DigitalOcean,曾是云计算平台 Heroku 的 Python 架构师,目前 Github 上 Python 排行榜第一的用户。(star 数超过了包括 google、tensorflow、django 等账号)

但他被更多路人所熟知的,恐怕还是他从一名技术肥宅逆袭成为文艺高富帅的励志故事。

图片

相关文章
|
23天前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
27天前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
74 4
|
1月前
|
数据采集 API 数据格式
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
|
6月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
293 6
|
6月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
282 4
|
9月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
358 6
|
9月前
|
数据采集 存储 JSON
Python爬虫开发:BeautifulSoup、Scrapy入门
在现代网络开发中,网络爬虫是一个非常重要的工具。它可以自动化地从网页中提取数据,并且可以用于各种用途,如数据收集、信息聚合和内容监控等。在Python中,有多个库可以用于爬虫开发,其中BeautifulSoup和Scrapy是两个非常流行的选择。本篇文章将详细介绍这两个库,并提供一个综合详细的例子,展示如何使用它们来进行网页数据爬取。
|
数据采集 JSON 前端开发
Python爬虫进阶:使用Scrapy库进行数据提取和处理
在我们的初级教程中,我们介绍了如何使用Scrapy创建和运行一个简单的爬虫。在这篇文章中,我们将深入了解Scrapy的强大功能,学习如何使用Scrapy提取和处理数据。
|
12月前
|
数据采集 存储 中间件
Python高效爬虫——scrapy介绍与使用
Scrapy是一个快速且高效的网页抓取框架,用于抓取网站并从中提取结构化数据。它可用于多种用途,从数据挖掘到监控和自动化测试。 相比于自己通过requests等模块开发爬虫,scrapy能极大的提高开发效率,包括且不限于以下原因: 1. 它是一个异步框架,并且能通过配置调节并发量,还可以针对域名或ip进行精准控制 2. 内置了xpath等提取器,方便提取结构化数据 3. 有爬虫中间件和下载中间件,可以轻松地添加、修改或删除请求和响应的处理逻辑,从而增强了框架的可扩展性 4. 通过管道方式存储数据,更加方便快捷的开发各种数据储存方式
|
数据采集 存储 JSON
Python爬虫面试:requests、BeautifulSoup与Scrapy详解
【4月更文挑战第19天】本文聚焦于Python爬虫面试中的核心库——requests、BeautifulSoup和Scrapy。讲解了它们的常见问题、易错点及应对策略。对于requests,强调了异常处理、代理设置和请求重试;BeautifulSoup部分提到选择器使用、动态内容处理和解析效率优化;而Scrapy则关注项目架构、数据存储和分布式爬虫。通过实例代码,帮助读者深化理解并提升面试表现。
375 0