Java代码实现异步返回结果如何判断异步执行完成

简介: 【2月更文挑战第2天】

Java代码实现异步返回结果如何判断异步执行完成

在许多应用程序中,我们经常使用异步操作来提高性能和响应度。在Java中,我们可以使用多线程或者异步任务来执行耗时操作,并且在后台处理过程完成后获取结果。但是,在使用异步操作时,我们通常需要知道异步任务何时完成,以便进行下一步的操作。 本篇文章将介绍几种常见的方法来判断Java代码中异步操作是否完成。

1. 使用Future和Callable

Java中的Future接口定义了一种方式来表示异步操作的未来结果。我们可以使用Callable接口来定义异步任务,它返回一个Future对象,我们可以利用Future对象的方法来检查任务是否完成。 下面是一个例子:

javaCopy code
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class AsyncDemo {
    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        // 定义异步任务
        Callable<String> asyncTask = () -> {
            Thread.sleep(2000); // 模拟耗时操作
            return "Async task completed";
        };
        // 提交异步任务
        Future<String> future = executorService.submit(asyncTask);
        // 判断任务是否完成
        while (!future.isDone()) {
            System.out.println("Task not done yet...");
            Thread.sleep(500);
        }
        // 获取结果
        String result = future.get();
        System.out.println(result);
        // 关闭线程池
        executorService.shutdown();
    }
}

在上面的代码中,我们创建了一个单线程的ExecutorService来执行异步任务。我们使用submit方法提交异步任务,并得到一个Future对象。然后,我们可以使用isDone()方法来判断任务是否完成,如果任务没有完成,则等待片刻后再次检查。一旦任务完成,我们可以使用get()方法获取任务的结果。

2. 使用CompletableFuture

自Java 8起,Java提供了CompletableFuture类来更加方便地处理异步操作。CompletableFutureFuture的一个实现,同时也支持对未来结果的处理和组合。 下面是一个例子:

javaCopy code
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.TimeUnit;
public class AsyncDemo {
    public static void main(String[] args) throws Exception {
        // 定义异步任务
        CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
            try {
                TimeUnit.SECONDS.sleep(2); // 模拟耗时操作
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            return "Async task completed";
        });
        // 判断任务是否完成
        while (!future.isDone()) {
            System.out.println("Task not done yet...");
            TimeUnit.MILLISECONDS.sleep(500);
        }
        // 获取结果
        String result = future.get();
        System.out.println(result);
    }
}

在上述代码中,我们使用supplyAsync方法创建了一个CompletableFuture对象,并定义了异步任务。然后,我们可以使用isDone()方法来判断任务是否完成。通过调用get()方法可以获取最终的结果。

当涉及到实际应用场景时,异步操作的一个常见用例是在Web应用中执行并行的HTTP请求以提高性能。以下是一个示例代码,展示了如何使用异步操作来执行多个HTTP请求,并在所有请求完成后进行处理。

javaCopy code
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.*;
public class AsyncHttpExample {
    public static void main(String[] args) throws Exception {
        List<Future<String>> futures = new ArrayList<>();
        
        ExecutorService executor = Executors.newFixedThreadPool(5);
        
        List<String> urls = List.of(
                "https://www.example.com/api1",
                "https://www.example.com/api2",
                "https://www.example.com/api3"
        );
        
        for (String url : urls) {
            Callable<String> task = () -> {
                return performRequest(url);
            };
            
            Future<String> future = executor.submit(task);
            futures.add(future);
        }
        
        executor.shutdown();
        
        for (Future<String> future : futures) {
            try {
                String result = future.get();
                System.out.println("Received response: " + result);
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        }
    }
    
    private static String performRequest(String url) throws IOException {
        HttpURLConnection connection = null;
        BufferedReader reader = null;
        StringBuilder response = new StringBuilder();
        
        try {
            URL requestUrl = new URL(url);
            connection = (HttpURLConnection) requestUrl.openConnection();
            connection.setRequestMethod("GET");
            
            reader = new BufferedReader(new InputStreamReader(connection.getInputStream()));
            String line;
            
            while ((line = reader.readLine()) != null) {
                response.append(line);
            }
        } finally {
            if (connection != null) {
                connection.disconnect();
            }
            
            if (reader != null) {
                reader.close();
            }
        }
        
        return response.toString();
    }
}

在这个示例中,我们创建了一个固定大小的线程池,并为每个URL创建了一个异步任务。每个任务在自己的线程中执行HTTP请求,并返回响应结果。我们使用Future来跟踪每个任务的执行状态和结果。一旦所有任务都被提交,我们调用shutdown()方法关闭线程池,然后通过迭代每个Future对象,使用get()方法获取任务的结果。最后,我们可以根据需要对结果进行进一步处理,这里只是简单地打印出每个请求的响应。

java.util.concurrent.Callable 是 Java 并发编程中的一个接口,它表示一个可调用的任务,可以在计算中返回一个值。与 Runnable 接口不同,Callable 接口的 call() 方法可以返回一个结果,并且可以在执行过程中抛出受检异常。 Callable 接口定义了以下方法:

  • V call() throws Exception:执行任务并返回结果。可以抛出受检异常。
  • boolean equals(Object obj):比较该 Callable 与指定对象是否相等。
  • default <U> Callable<U> compose(Function<? super V, ? extends U> var1):将该 Callable 的结果应用于给定函数,并返回 Callable
  • default <V2> Callable<V2> andThen(Function<? super V, ? extends V2> var1):将给定函数应用于该 Callable 的结果,并返回新的 Callable
  • default Predicate<V> isEqual(Object var1):返回谓词,用于判断对象是否与这个 Callable 的结果相等。
  • default Supplier<V> toSupplier():返回将该 Callable 的结果作为值的供应商。 在实际应用中,Callable 接口常常与 ExecutorService 结合使用,通过将 Callable 对象提交给线程池来执行。线程池会返回一个 Future 对象,用于跟踪任务的执行状态和获取结果。 以下是一个示例代码,展示了如何使用 Callable 接口:
javaCopy code
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
public class CallableExample {
    public static void main(String[] args) throws Exception {
        Callable<Integer> task = () -> {
            int sum = 0;
            for (int i = 1; i <= 100; i++) {
                sum += i;
            }
            return sum;
        };
        
        ExecutorService executor = Executors.newSingleThreadExecutor();
        Future<Integer> future = executor.submit(task);
        
        // 可以在此处执行其他任务
        
        Integer result = future.get(); // 获取任务的结果,会阻塞直到任务完成
        System.out.println("Sum: " + result);
        
        executor.shutdown();
    }
}

在上述示例中,我们创建了一个实现了 Callable 接口的任务,并将其提交给一个单线程的线程池来执行。我们通过 Future 对象来获取 Callable 任务的执行结果,其中 get() 方法会阻塞当前线程,直到任务完成并返回结果。

总结

通过使用FutureCompletableFuture,我们可以方便地判断Java代码中异步操作的执行是否完成。这样,我们就可以在异步操作完成后获取结果,并且继续进行后续的操作。这种方式提高了代码的响应性和性能,使我们能够更好地处理并发和异步任务。

相关文章
|
15天前
|
Java 测试技术 应用服务中间件
常见 Java 代码缺陷及规避方式(下)
常见 Java 代码缺陷及规避方式(下)
43 0
|
17天前
|
Java
Java中ReentrantLock释放锁代码解析
Java中ReentrantLock释放锁代码解析
25 8
|
20天前
|
前端开发 小程序 Java
uniapp上传图片 前端以及java后端代码实现
uniapp上传图片 前端以及java后端代码实现
33 0
|
21天前
|
设计模式 存储 Java
23种设计模式,享元模式的概念优缺点以及JAVA代码举例
【4月更文挑战第6天】享元模式(Flyweight Pattern)是一种结构型设计模式,旨在通过共享技术有效地支持大量细粒度对象的重用。这个模式在处理大量对象时非常有用,特别是当这些对象中的许多实例实际上可以共享相同的状态时,从而可以减少内存占用,提高程序效率
35 4
|
15天前
|
Java
代码的魔法师:Java反射工厂模式详解
代码的魔法师:Java反射工厂模式详解
26 0
|
15天前
|
监控 安全 Java
常见 Java 代码缺陷及规避方式(中)
常见 Java 代码缺陷及规避方式(中)
27 1
|
17天前
|
设计模式 算法 Java
23种设计模式,模板方法模式的概念优缺点以及JAVA代码举例
【4月更文挑战第10天】模板方法模式是一种行为设计模式,它定义了一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以在不改变算法结构的情况下,重新定义算法中的某些特定步骤。
15 0
|
18天前
|
设计模式 Java
23种设计模式,状态模式的概念优缺点以及JAVA代码举例
【4月更文挑战第9天】状态模式是一种行为设计模式,允许一个对象在其内部状态改变时改变它的行为,这个对象看起来似乎修改了它的类。
29 4
|
18天前
|
算法 安全 Java
java代码 实现AES_CMAC 算法测试
该代码实现了一个AES-CMAC算法的简单测试,使用Bouncy Castle作为安全提供者。静态变量K定义了固定密钥。`Aes_Cmac`函数接受密钥和消息,返回AES-CMAC生成的MAC值。在`main`方法中,程序对给定的消息进行AES-CMAC加密,然后模拟接收ECU的加密结果并进行比较。如果两者匹配,输出&quot;验证成功&quot;,否则输出&quot;验证失败&quot;。辅助方法包括将字节转为16进制字符串和将16进制字符串转为字节。
|
20天前
|
设计模式 Java
23种设计模式,命令模式的概念优缺点以及JAVA代码举例
【4月更文挑战第7天】命令模式是一种行为设计模式,它将请求或简单操作封装为一个对象。这种模式允许用户通过调用对象来参数化其他对象的方法,并能保存、排队和执行方法调用。
21 1