LeViT-UNet:transformer 编码器和CNN解码器的有效整合

简介: LeViT-UNet:transformer 编码器和CNN解码器的有效整合

LeViT-UNet架构

levi - unet的编码器使用LeViT块构建,设计用于高效和有效地学习全局特征。解码器是使用卷积块构建的。

编码器从多个分辨率的输入图像中提取特征映射。这些特征映射被上采样,连接然后通过跳过连接传递到解码器。跳过连接允许解码器从编码器访问高分辨率的局部特征,有助于提高分割性能。

这种设计使模型能够综合transformer 和cnn的优点。transformer 刚擅长学习全局特征,而cnn擅长学习局部特征。通过结合这两种方法,levi - unet能够获得良好的分割性能,同时也相对高效。

LeViT编码器

编码器采用LeViT[1],主要由两个部分组成:卷积块和变压器块。卷积块通过对输入图像应用4层3x3卷积(步幅为2)来执行分辨率降低。在提取更多抽象特征的同时,这将图像的分辨率降低了一半。然后transformer块获取卷积块的特征映射并学习全局特征。

在编码器的最后阶段将来自卷积块和变压器块的特征连接起来。这使得编码器具有本地和全局特性。局部特征对于识别图像中的小而详细的物体很重要,而全局特征对于识别图像的整体结构很重要。通过结合局部和全局特征,编码器能够生成更准确的分割。

根据输入第一个transformer块的通道数量,开发了3个LeViT编码器:levi -128s, levi -192和levi -384。

image.png

CNN解码器

levi - unet的解码器将编码器的特征与跳过连接连接在一起。使得解码器能够从编码器访问高分辨率的局部特征,并采用级联上采样策略,利用cnn从前一层恢复分辨率。它由一系列上采样层组成,每个上采样层后面是两个3x3卷积层,一个BN和一个ReLU层。

实验结果

实现细节:数据增强(随机翻转和旋转),优化器(Adam,学习率1e-5,权重衰减1e-4),图像大小224x224,批大小8,epoch 350和400用于Synapse和ACDC数据集

LeViT模型优于现有模型,并且明显快于TransUNet,后者将Transformer块合并到CNN中。

上图显示了TransUNet、UNet、DeepLabv3+和levi -UNet四种不同方法的定性分割结果。其他三种方法更可能导致器官不足或者过度分割。例如,胃被TransUNet和DeepLabV3+分割不足(如上行第三个面板的红色箭头所示),被UNet过度分割(如第二行第四个面板的红色箭头所示)。

与其他方法相比,论文提出的模型输出相对平滑,表明在边界预测方面更具优势。

2篇论文:

[1] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herv’e J’egou, Matthijs Douze, LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference, 2021https://arxiv.org/abs/2104.01136[2] Guoping Xu, Xingrong Wu, Xuan Zhang, Xinwei He, LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation, 2021

https://arxiv.org/abs/2107.08623

相关文章
|
机器学习/深度学习 自然语言处理 异构计算
Python深度学习面试:CNN、RNN与Transformer详解
【4月更文挑战第16天】本文介绍了深度学习面试中关于CNN、RNN和Transformer的常见问题和易错点,并提供了Python代码示例。理解这三种模型的基本组成、工作原理及其在图像识别、文本处理等任务中的应用是评估技术实力的关键。注意点包括:模型结构的混淆、过拟合的防治、输入序列长度处理、并行化训练以及模型解释性。掌握这些知识和技巧,将有助于在面试中展现优秀的深度学习能力。
764 11
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
​​超越CNN与RNN:为什么Transformer是AI发展的必然选择?​
本文深入解析Transformer及其在AI领域的三大突破:自然语言处理、视觉识别(ViT)与图像生成(DiT)。以“注意力即一切”为核心,揭示其如何成为AI时代的通用架构。
634 2
|
5月前
|
机器学习/深度学习 数据采集 并行计算
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
540 2
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
977 9
|
机器学习/深度学习 人工智能 自然语言处理
一文介绍CNN/RNN/GAN/Transformer等架构 !!
一文介绍CNN/RNN/GAN/Transformer等架构 !!
1526 5
|
机器学习/深度学习 自然语言处理 并行计算
神经网络结构——CNN、RNN、LSTM、Transformer !!
神经网络结构——CNN、RNN、LSTM、Transformer !!
1638 0
|
机器学习/深度学习 并行计算 算法
模型压缩部署神技 | CNN与Transformer通用,让ConvNeXt精度几乎无损,速度提升40%
模型压缩部署神技 | CNN与Transformer通用,让ConvNeXt精度几乎无损,速度提升40%
408 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
865 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
391 0
|
6月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
322 0

热门文章

最新文章