Apache Flink 是一个开源的分布式流处理框架

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink 是一个开源的分布式流处理框架

Apache Flink 是一个开源的分布式流处理框架,自 1.11 版本起,Flink 提供了与 Kafka 集成的官方 Connector,使得 Flink 能够消费 Kafka 数据。在 Flink 1.14.4 版本中,确实支持将 Kafka 偏移量保存在外部系统,如Kafka本身,并且可以手动维护这些偏移量。

Flink Kafka Consumer 允许通过不同的设置模式来控制如何从 Kafka 主题中读取数据。例如,使用 setStartFromGroupOffsets() 方法,Flink 将从消费者组上次提交的偏移量开始消费。而 setStartFromEarliest() 则会从主题最早的记录开始消费,丢弃已提交的偏移量。另外,setStartFromLatest() 方法使得 Flink 从最新的记录开始消费。此外,还可以通过 setStartFromTimestamp() 方法指定从某个时间戳开始消费。

如果需要更精细的控制,可以使用 setStartFromSpecificOffsets(specificStartOffsets) 方法,该方法需要一个映射 Map<KafkaTopicPartition, Long> 作为参数,其中包含了每个分区开始的偏移量。

当启动了 Flink 的检查点(Checkpoint)机制时,Flink Kafka Consumer 会自动将偏移量保存在检查点状态中。这意味着,如果发生故障,Flink 可以从最后一个检查点恢复消费,从而确保数据的一致性和可靠性。为此,你可以配置 enableCheckpointing 来启用检查点,并设置 auto.commit.interval.ms 为 Kafka 消费者的自动提交偏移量的间隔。

此外,Flink Kafka Consumer 提供了 setCommitOffsetsOnCheckpoints(true) 方法,用于在每次检查点完成后自动提交偏移量到 Kafka。这确保了 Kafka 中的 committed offset 与 Flink 状态后端中的 offset 保持一致。

不过,值得注意的是,如果 Flink 作业发生了故障,且没有从检查点恢复,而是直接重启,Flink 将尝试从上一次提交的偏移量或配置的偏移量重新开始消费。这种情况下,就需要确保 Kafka 中有可用的偏移量供 Flink 恢复。

综上所述,Flink 1.14.4 版本支持将 Kafka 偏移量保存在外部系统,并可以手动维护这些偏移量,结合检查点机制,可以确保数据的一致性和可靠性。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
78 3
|
2月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
85 0
|
26天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
82 3
|
1月前
|
机器学习/深度学习 并行计算 Java
谈谈分布式训练框架DeepSpeed与Megatron
【11月更文挑战第3天】随着深度学习技术的不断发展,大规模模型的训练需求日益增长。为了应对这种需求,分布式训练框架应运而生,其中DeepSpeed和Megatron是两个备受瞩目的框架。本文将深入探讨这两个框架的背景、业务场景、优缺点、主要功能及底层实现逻辑,并提供一个基于Java语言的简单demo例子,帮助读者更好地理解这些技术。
61 2
|
15天前
|
SQL 分布式计算 数据处理
Structured Streaming和Flink实时计算框架的对比
本文对比了Structured Streaming和Flink两大流处理框架。Structured Streaming基于Spark SQL,具有良好的可扩展性和容错性,支持多种数据源和输出格式。Flink则以低延迟、高吞吐和一致性著称,适合毫秒级的流处理任务。文章详细分析了两者在编程模型、窗口操作、写入模式、时间语义、API和库、状态管理和生态系统等方面的优劣势。
|
2月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
83 1
|
2月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
50 1
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
4月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
116 2
基于Redis的高可用分布式锁——RedLock

推荐镜像

更多