在Flink CEP中,可以通过定义带有时间约束的模式来匹配事件的持续时间

简介: 在Flink CEP中,可以通过定义带有时间约束的模式来匹配事件的持续时间

在Flink CEP中,可以通过定义带有时间约束的模式来匹配事件的持续时间。对于给定的例子,如果要匹配车速高于120km/h且持续时间超过1分钟的情况,可以采用以下步骤进行模式定义和匹配:

首先,确保数据流已经被赋予了时间戳和水位线,这样Flink才能根据事件时间进行正确的排序和匹配。如果数据源已经是事件驱动的,并且包含了事件时间戳,则可以跳过这一步。

接着,定义一个模式,该模式会监测车速是否连续超过120km/h。这可以通过组合模式(group pattern)来实现,组合模式允许将多个模式组合在一起进行匹配。例如,可以定义模式PATTERN (speed HIGH FOR 60s),这里的HIGH是一个预定义的条件,表示车速高于120km/h,FOR 60s指定了持续时间必须超过1分钟。

在SELECT或flatSelect方法中,提取出匹配的事件序列。这些方法会让您能够从匹配到的模式中提取出具体的事件。在这个例子中,您可以提取出车速超过120km/h的所有事件,以及这些事件开始和结束的时间戳。

如果需要的话,可以设置超时事件处理程序,以处理那些虽然超过了时间限制,但仍未完全匹配成功的事件序列。

下面是一段简化的Flink CEP代码示例,展示了如何实现上述匹配逻辑:

import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

// 假设已经有了一个带有时间戳和水位线的DataStream
DataStream gpsEvents = ...;

// 定义模式,车速高于120km/h且持续时间超过1分钟
Pattern speedHighPattern = Pattern.<GPSEvent>begin("speedHigh")
.where(new SimpleCondition() {
@Override
public boolean filter(GPSEvent value) {
return value.getSpeed() > 120;
}
})
.next("duration")
.where(new SimpleCondition() {
@Override
public boolean filter(GPSEvent value) {
return value.getDuration() > 60;
}
});

// 创建PatternStream
PatternStream patternStream = CEP.pattern(gpsEvents, speedHighPattern);

// 提取匹配的事件
patternStream.select(new PatternSelectFunction() {
@Override
public String select(Map> pattern) throws Exception {
// 这里填充匹配事件的处理逻辑
return null;
}
});

// 启动程序
env.execute("GPS Speed High Detection");
在上述代码中,我们定义了一个名为speedHighPattern的模式,该模式首先匹配车速高于120km/h的事件,并要求这种状态持续超过1分钟。通过select方法,我们可以进一步处理匹配到的事件序列。在实际应用中,您可能需要根据具体的GPS事件数据结构进行调整。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
8月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
1436 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
10月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
2203 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
371 0
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
307 0
|
关系型数据库 MySQL 数据处理
实时计算 Flink版产品使用问题之mini-cluster模式下,怎么指定checkpoint的时间间隔
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
481 0
|
Java 关系型数据库 MySQL
实时计算 Flink版操作报错合集之在使用批处理模式中使用flat_aggregate函数时报错,该如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
资源调度 算法 Java
Flink四种集群模式原理
Flink四种集群模式原理
821 0
|
消息中间件 SQL Kafka
实时计算 Flink版产品使用问题之如何将changelog转换为append模式
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
关系型数据库 MySQL Serverless
实时计算 Flink版产品使用问题之原生Session模式下遇到classpath路径未生效,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。