Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术

如果Flink CDC的Oraclecdc JdbcIncrementalSource捕获不到数据也不报错,可能是以下原因:

检查数据库连接是否正常,可以尝试使用其他工具连接数据库,确认连接是否成功。

检查JdbcIncrementalSource的配置是否正确,特别是表名和字段名是否正确。

检查Flink任务的并行度是否设置正确,如果并行度设置过高,可能会导致数据无法正常消费。

检查Flink任务的checkpoint是否配置正确,如果checkpoint配置不正确,可能会导致数据无法正常消费。

检查Oracle数据库的日志,查看是否有异常或错误信息。

如果以上方法都无法解决问题,可以联系Flink社区或Oracle技术支持寻求帮助。

Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术,它能够实时地监控数据库的变化并将这些变化数据同步到下游系统。至于内置函数的添加时间,并没有具体的时间表或发布日期公开。通常,随着Flink版本更新,会不断地有新的功能和内置函数被添加进来,以增强其处理能力和易用性。

如果您想了解Flink CDC中特定内置函数的添加时间,建议查看Flink的官方文档或者跟踪其版本更新日志,这些通常会包含新功能的引入信息。同时,您也可以关注Flink社区的讨论和发布公告,以获取最新的功能更新动态。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
368 31
Apache Flink 流批融合技术介绍
|
17天前
|
安全 数据库 数据安全/隐私保护
数据库 变更和版本控制管理工具 --Bytebase 安装部署
数据库 变更和版本控制管理工具 --Bytebase 安装部署
31 0
|
3月前
|
Cloud Native 安全 调度
Flink 新一代流计算和容错问题之Flink 通过云原生技术改进容错设计要如何操作
Flink 新一代流计算和容错问题之Flink 通过云原生技术改进容错设计要如何操作
|
3月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版产品使用问题之如何处理数据并记录每条数据的变更
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
3月前
|
机器学习/深度学习 监控 Serverless
Serverless 应用的监控与调试问题之Flink在内部使用的未来规划,以及接下来有什么打算贡献社区的创新技术
Serverless 应用的监控与调试问题之Flink在内部使用的未来规划,以及接下来有什么打算贡献社区的创新技术
|
3月前
|
机器学习/深度学习 人工智能 运维
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
|
3月前
|
SQL 数据处理 API
实时计算 Flink版产品使用问题之不支持的表结构变更有哪些
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
19天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
54 3
Mysql(4)—数据库索引
|
4天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
29 2
|
7天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
32 4

热门文章

最新文章